精英家教网 > 初中数学 > 题目详情

(1)已知:如图1,?ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BE=DF.
(2)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图2是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

(1)证明:∵ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
又∵AE⊥BD,CF⊥BD
∴∠AEB=∠CFD=90°
∴∠BAE=∠BCF,
在△ABE与△CDF中,

∴△ABE≌△CDF,
∴BE=DF;

(2)解:假设O为圆形截面所在圆的圆心,过O作OC⊥AB于D,交AB于C,
∵OC⊥AB,
∴BD=AB=×16=8cm,
由题意可知,CD=4cm.
设半径为xcm,则OD=(x-4)cm.
在Rt△BOD中,由勾股定理得:OD2+BD2=OB2
∴(x-4)2+82=x2
∴x=10.即这个圆形截面的半径为10cm.
分析:(1)先根据平行四边形的性质得出AB=CD,AB∥CD,由全等三角形的判定定理得出△ABE≌△CDF,由全等三角形的性质即可得出结论;
(2)假设O为圆形截面所在圆的圆心,过O作OC⊥AB于D,交AB于C,先由垂径定理得出BD的长,故可得出CD的长,设半径为xcm,则OD=(x-4)cm.在Rt△BOD中,由勾股定理即可求出x的值,进而得出结论.
点评:本题考查的是垂径定理、勾股定理及平行四边形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处精英家教网,测得C在B的北偏西45°方向上.
(1)NM是否穿过文物保护区?为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠1=∠2,
 
.求证:AB=AC.
(1)在横线上添加一个使命题的结论成立的条件;
(2)写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

查看答案和解析>>

同步练习册答案