【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.
(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
【答案】(1)证明见解析;(2)EM与DM的关系是EM垂直且平分DF;理由见解析.
【解析】试题分析:(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;
(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.
试题解析:(1)证明:∵AD∥BC,
∴∠ADE=∠BFE,
∵E为AB的中点,
∴AE=BE,
在△AED和△BFE中,
,
∴△AED≌△BFE(AAS);
(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:
连接EM,如图所示:
由(1)得:△AED≌△BFE,
∴DE=EF,
∵∠MDF=∠ADF,∠ADE=∠BFE,
∴∠MDF=∠BFE,
∴FM=DM,
∴EM⊥DF,
∴ME垂直平分DF.
科目:初中数学 来源: 题型:
【题目】如果反比例函数的图象经过点(3,﹣5),那么这个反比例函数的图象一定经过点( )
A. (3,5) B. (﹣3,5) C. (﹣3,﹣5) D. (0,﹣5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形,并探究和解答下列问题:
(1)设铺设地面所用瓷砖的总块数为y,请写出y与n(表示第n个图形)的关系式;
(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;
(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?
(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
①填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB、AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣2,0),C(﹣4,3).
(1)请画出△ABC关于y轴对称的△A'B′C′(其中A'、B′、C′分别是A、B、C的对称点,不写画法);
(2)写出C′的坐标,并求△ABC的面积;
(3)在y轴上找出点P的位置,使线段PA+PB的最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com