【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣2,0),C(﹣4,3).
(1)请画出△ABC关于y轴对称的△A'B′C′(其中A'、B′、C′分别是A、B、C的对称点,不写画法);
(2)写出C′的坐标,并求△ABC的面积;
(3)在y轴上找出点P的位置,使线段PA+PB的最小.
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.两个全等的三角形一定关于某条直线对称
B.关于某条直线对称的两个三角形一定全等
C.直角三角形是轴对称图形
D.锐角三角形是轴对称图形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线p: 的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是和y=2x+2,则这条抛物线的解析式为____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.
(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李先生乘出租车去某公司办事,下车时,打出的电子收费单为“里程11千米,应收29.10元”.该城市的出租车收费标准如下表所示,请求出起步价N(N<12).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店原来将进货价为8元的商品按10元售出,每天可销售200件.现在采用提高售价,减少进货量的方法来增加利润,已知每件商品涨价1元,每天的销售量就减少20件.设这种商品每个涨价元.
(1)填空:原来每件商品的利润是 元,涨价后每件商品的实际利润是 元 (可用含的代数式表示);
(2)为了使每天获得700元的利润,售价应定为多少元?
(3)售价定为多少元时,每天利润最大,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.
(1)求证:MN⊥DE.
(2)连结DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.
(3)当∠A变为钝角时,如图,上述(1)(2)中的结论是否都成立, 若结论成立,直接回答,不需证明;若结论不成立,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比( )
A.横坐标不变,纵坐标加 3B.纵坐标不变,横坐标加 3
C.横坐标不变,纵坐标乘以 3D.纵坐标不变,横坐标乘以 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题12分)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(-3,0),与y轴交于点C,以直线x=1为对称轴的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B
(1) 求m的值及抛物线的函数表达式;
(2) 是否存在抛物线上一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若存在,请说明理由;
(3) 若P是抛物线对称轴上一动点,且使△ACP周长最小,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请求出结果,如果不是请说明理由. (参考公式:在平面直角坐标之中,若A((x1,y1),B(x2,y2),则A,B两点间的距离为)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com