精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+mx+3的对称轴为x=-2.
(1)求m的值;
(2)如果将此抛物线向右平移5个单位后,求所得抛物线与y轴的交点坐标.

解:(1)由题意,得-=-2.…(2分)
∴m=4.…(2分)

(2)由(1)知,m=4,
∴此抛物线的表达式为y=x2+4x+3=(x+2)2-1.…(2分)
∵向右平移5个单位后,所得抛物线的表达式为y=(x-3)2-1,
即y=x2-6x+8.…(2分)
当x=0时,y=8,
∴它与y轴的交点坐标为(0,8).…(2分)
分析:(1)根据对称轴方程x=-求m的值;
(2)利用(1)的结果求得该抛物线的解析式,然后根据“左加右减”的原则求得平移后的抛物线的解析式;最后令x=0即可求得所得抛物线与y轴的交点坐标.
点评:本题考查了待定系数法求二次函数的解析式、二次函数图象与几何变换.解答(2)时,将抛物线的一般式方程转化为顶点式方程,为的是便于求平移后的抛物线的关系式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案