精英家教网 > 初中数学 > 题目详情

如图,⊙O的半径为2cm,∠AOB=90°,∠A=30°,AB交⊙O于C,则图中阴影部分的面积为________cm2

π+
分析:连接OC,则△OBC是等边三角形,根据阴影部分的面积是=扇形BOD的面积-(扇形BOC的面积-S△OBC),分别求出两个扇形的面积和等边三角形的面积即可求解.
解答:解:连接OC,
则扇形BOD的面积是:=π,
∵∠AOB=90°,∠A=30°,
∴∠B=90°-30°=60°,
又∵OB=OC
∴△OBC是等边三角形,
∴扇形BOC的面积是:=π,S△OBC==
∴阴影部分的面积是=扇形BOD的面积-(扇形BOC的面积-S△OBC)=π-(π-)=π+
故答案是:π+
点评:本题考查了扇形的面积公式以及等边三角形的面积,不规则的图形可以通过规则图形的面积的和或差来计算,理解阴影部分的面积是=扇形BOD的面积-(扇形BOC的面积-S△OBC)是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案