精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+kx+2k-4
(1)当k=2时,求出此抛物线的顶点坐标;
(2)求证:无论k为任何实数,抛物线都与x轴有交点,且经过x轴一定点;
(3)已知抛物线与x轴交于A(x1,0)、B(x2,0)两点(A在B的左边),|x1|<|x2|,与y轴交于C点,且S△ABC=15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.

解:(1)当k=2时,抛物线为y=x2+2x,
配方:y=x2+2x=x2+2x+1-1
得y=(x+1)2-1,
∴顶点坐标为(-1,-1).(也可由顶点公式求得)

(2)令y=0,有x2+kx+2k-4=0,
此一元二次方程根的判别式
△=k2-4•(2k-4)=k2-8k+16=(k-4)2
∵无论k为什么实数,(k-4)2≥0,
方程x2+kx+2k-4=0都有解,
即抛物线总与x轴有交点.
由求根公式得x=
当k≥4时,x=,x1==-2,x2==-k+2;
当k<4时,x=,x1==-k+2,x2==-2.
即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),
而点(-2,0)是x轴上的定点.

(3)过A,B,C三点的圆与该抛物线有第四个交点.设此点为D.
∵|x1|<|x2|,C点在y轴上,由抛物线的对称,可知点C不是抛物线的顶点.
由于圆和抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形.
∵x轴上的两点A、B关于抛物线对称轴对称,
∴过A、B、C三点的圆与抛物线的第四个交点D应与C点关于抛物线对称轴对称.
由抛物线与x轴的交点分别为(-2,0)和(-k+2,0):
当-2<-k+2,即k<4时,A点坐标为(-2,0),B为(-k+2,0).
即x1=-2,x2=-k+2.
由|x1|<|x2|得-k+2>2,解得k<0.
根据S△ABC=15,得AB•OC=15.
AB=-k+2-(-2)=4-k,
OC=|2k-4|=4-2k,
(4-k)(4-2k)=15,
化简整理得k2-6k-7=0,
解得k=7(舍去)或k=-1.
此时抛物线解析式为y=x2-x-6,
其对称轴为x=,C点坐标为(0,-6),它关于x=的对称点D坐标为(1,-6);
当-2>-k+2,由A点在B点左边,知A点坐标为(-k+2,0),B为(-2,0).
即x1=-k+2,x2=-2.
但此时|x1|>|x2|,这与已知条件|x1|<|x2|不相符,
∴不存在此种情况.
故第四个交点的坐标为(1,-6).(如图)
分析:(1)首先由k值确定抛物线的解析式,通过配方即可得到抛物线的顶点坐标.
(2)此题需要证明两点:①“无论k为任何实数,抛物线都与x轴有交点”.那么令抛物线的函数值为0,在所得方程中,证明根的判别式为非负数即可;
②“经过x轴一定点”.证明这一点方法较多,如:可由求根公式求出两根,或通过因式分解求出两根,观察两根的特点即可得出结论.
(3)首先判断是否存在第四个交点,由题干条件|x1|<|x2|,显然抛物线的对称轴不是y轴,即C点不可能是抛物线的顶点(因为点C不在抛物线的对称轴上),由于抛物线和圆都是轴对称图形,那么必然存在第四个交点,所以解题的关键就转化为如何求k的值,可以从△ABC的面积入手.
首先,要求出AB和OC的长,由(2)已求得A、B点的坐标,根据|x1|<|x2|,先得到k的取值范围,进而通过△ABC的面积求出k的值,代入抛物线的解析式中即可明确抛物线的对称轴方程,而C、D(设点D是第四个交点)关于抛物线的对称轴对称,那么点D的坐标就显而易见了.
点评:该题的难度较大,主要涉及了:二次函数与圆的性质、二次函数与方程的关系以及不等式的应用等综合知识.最后一题中,k的取值范围的确定是本题的难点所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案