分析 (1)由在梯形ABCD中,AD∥BC,∠B=90°,可得当AP=BQ时,四边形ABQP是矩形,即可得方程:t=26-2t,解此方程即可求得答案.
(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24-t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(24-t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.
解答 解:根据题意得:AP=tcm,CQ=3tcm,
∵AB=8cm,AD=24cm,BC=26cm,
∴DP=AD-AP=24-t(cm),BQ=26-3t(cm),
(1)∵在梯形ABCD中,AD∥BC,∠B=90°,
∴当AP=BQ时,四边形ABQP是矩形,
∴t=26-3t,
解得:t=6.5,
∴当t=6.5时,四边形ABQP是矩形;
(2)若PQ=DC,分两种情况:
①PQ=DC,由(1)可知,t=6,
②PQ≠CC,由QC=PD+2(BC-AD),
可得方程:3t=24-t+4,
解得:t=7.
点评 此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a=3,b=4,c=5 | B. | a=6,b=8,c=10 | C. | a=2,b=3,c=3 | D. | a=1,b=1,c=$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 两个矩形一定相似 | |
| B. | 两个菱形一定相似 | |
| C. | 邻边之比为1:2的两个平行四边形相似 | |
| D. | 有一个角是60°的两个菱形相似 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com