精英家教网 > 初中数学 > 题目详情

【题目】计算:

(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)3+(-2)+5+(-8);

(3)(-103)+(+1)+(-97)+(+100)+(-1);

(4)(-2)+(-0.38)+(-)+(+0.38);

(5)(-9)+15+(-3)+(-22.5)+(-15);

(6)[(+)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+)].

【答案】(1)-6.7;(2)-2;(3)-99(4)-3;(5)-35;(6)0

【解析】

根据有理数的加法运算律进行运算即可.

解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].

=1.3-8=-6.7;

(2)3+(-2)+5+(-8).

=3+5.

=9+(-11).

=-2;

(3)原式=[(-103)+(-97)]++100.

=-200++100=-99

(4)(-2)+(-0.38)+(-)+(+0.38).

+[(-0.38)+(+0.38)].

=-3+0.

=-3;

(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).

=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).

=-25+12.5+(-22.5).

=-25+[12.5+(-22.5)].

=-25+(-10)=-35;

(6)+[(+2.5)+(+6)+(+)].

=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).

+[-3.5+(+2.5)]+[(-6)+(+6)].

=1+(-1)+0.

=0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数xy在数轴上对应点如图所示:

1)在数轴上表示﹣x|y|

2)试把xy0,﹣x|y|这五个数从小到大用“<”号连接,

3)化简:|x+y||yx|+|y|

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC=90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图2所示,设△AEF的移动时间为t(s)(0<t<4).
(1)当t=1时,求EH的长度;
(2)若EG⊥AG,求证:EG2=AEHG;
(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于且小于等于180°的角).

(1)如图1,当OB、OC重合时,求∠EOF的度数;

(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣BOF的值是否为定值?若是定值,求出∠AOE﹣BOF的值;若不是,请说明理由.

(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+EOF=6COD,则n=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中yx之间的函数关系.根据图中信息

1)求线段AB所在直线的函数解析式;

2可求得甲乙两地之间的距离为 千米;

3)已知两车相遇时快车走了180千米,则快车从甲地到达乙地所需时间为 小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,O为坐标原点,点A的坐标为(1,a),点B的坐标为(b,1),点C的坐标为(c,0),其中a、b满足(a+b﹣8)2+|a﹣b+2|=0.

(1)求A、B两点的坐标;

(2)当ABC的面积为6时,求点C的坐标;

(3)当4≤SABC10时,求点C的横坐标c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)当DE=DC时,求AD的长.

查看答案和解析>>

同步练习册答案