精英家教网 > 初中数学 > 题目详情

【题目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于且小于等于180°的角).

(1)如图1,当OB、OC重合时,求∠EOF的度数;

(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣BOF的值是否为定值?若是定值,求出∠AOE﹣BOF的值;若不是,请说明理由.

(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+EOF=6COD,则n=__________.

【答案】(1)70°;(2)AOE﹣BOF的值是为定值30°,理由见解析;(3)30

【解析】

(1)首先根据角平分线的定义求得∠EOB和∠COF的度数,然后根据∠EOF=∠EOB+∠COF求解;

(2)解法与(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;

(3)利用n表示出∠AOD,求得∠EOF的度数,根据∠AOD+∠EOF=6∠COD列方程求解.

解:(1)OE平分∠AOC,OF平分∠BOD,

∴∠EOB=AOB=×100°=50°,COF=COD=×40°=20°,

∴∠EOF=EOB+COF=50°+20°=70°;

(2)AOE﹣BOF的值是定值,理由是:∠AOC=AOB+n°,BOD=COD+n°,

OE平分∠AOC,OF平分∠BOD,

∴∠AOE=AOC=(100°+n°),BOF=BOD=(40°+n°),

∴∠AOE﹣BOF=(100°+n°)﹣(40°+n°)=30°;

(3)AOD=AOB+COD+n°=100°+40°+n°=140°+n°,

EOF=EOC+COF=EOC+COD﹣DOF=(100°+n°)+40°﹣(40°+n°)=70°,

∵∠AOD+EOF=6COD,(140+n)+70°=6×40,n=30.故答案是:30.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC中,ABACBC6.点P射线BA上一点,点Q是AC的延长线上一点,且BPCQ,连接PQ,与直线BC相交于点D.

(1)如图①,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,D,E为BC上两点,过点D,E分别作AC,AB的垂线,两垂线交于点M,垂足分别为G,F,若∠AED=∠BAD,AB=AC=2,则下列说法中不正确的是(  )

A.△CAE∽△BDA
B.
C.BD?CE=4
D.BE=BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A(﹣ , 0),点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的解析式;
(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣),求△ABN的面积s与t的函数解析式;
(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”
译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)
你的计算结果是:出南门 步而见木.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)3+(-2)+5+(-8);

(3)(-103)+(+1)+(-97)+(+100)+(-1);

(4)(-2)+(-0.38)+(-)+(+0.38);

(5)(-9)+15+(-3)+(-22.5)+(-15);

(6)[(+)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+)].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的解析表达式为:y=﹣3x+3,且l1x轴交于点D,直线l2经过点AB,直线l1l2交于点C根据图中信息

1)求直线l2的解析表达式;

2)求ADC的面积;

3)在直线l2上存在异于点C的另一点P,使得ADPADC的面积相等,求出点P的坐标;

4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以ADCH为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形各个内角的平分线围成一个四边形,则这个四边形一定是(  )

A. 正方形 B. 菱形 C. 矩形 D. 平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l、l分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:

①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时;

③乙走了8km后遇到甲; ④乙出发6分钟后追上甲.

其中正确的有_____________(填所有正确的序号).

查看答案和解析>>

同步练习册答案