精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l、l分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:

①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时;

③乙走了8km后遇到甲; ④乙出发6分钟后追上甲.

其中正确的有_____________(填所有正确的序号).

【答案】①②④

【解析】

①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;

②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;

④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;

③由④知:乙第一次遇到甲时,所走的距离为:=6km,故③错误;

所以正确的结论有三个:①②④

故答案为:①②④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知∠AOB=100°,COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于且小于等于180°的角).

(1)如图1,当OB、OC重合时,求∠EOF的度数;

(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣BOF的值是否为定值?若是定值,求出∠AOE﹣BOF的值;若不是,请说明理由.

(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+EOF=6COD,则n=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将-2,-1,0,1,2,3,4,5,6,7这10个数分别填写在五角星中每两条线的交点处(每个交点处只填写一个数),将每一条线上的4个数相加,共得5个数,设为a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交换其中任何两位数的位置后,(a1+a2+a3+a4+a5)的值是否改变?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.
(1)求证:∠PCE=∠PEC;
(2)若AB=10,ED= , sinA= , 求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)当DE=DC时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABC中,AB=AC

1)若DAC的中点,BD把三角形的周长分为24cm30cm两部分,求ABC三边的长;

2)若DAC上一点,试说明ACBD+DC)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;

(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;

(3)请将频数分布直方图补充完整;

(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M(-3m)是函数yx1与反比例函数k0)的图象的一个交点.

1)求反比例函数表达式;

2)点Px轴正半轴上的一个动点,设OPaa2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点AB,过OP的中点Qx轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.

①当a4时,求△ABC′的面积;

②若△AMC与△AMC′的面积相等,求a的值

查看答案和解析>>

同步练习册答案