【题目】如图,点M(-3,m)是函数y=x+1与反比例函数(k≠0)的图象的一个交点.
(1)求反比例函数表达式;
(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.
①当a=4时,求△ABC′的面积;
②若△AMC与△AMC′的面积相等,求a的值 .
【答案】(1);(2)①3.5;②a的值为3.
【解析】分析:(1)由一次函数解析式可得点M的坐标为(﹣3,﹣2),然后把点M的坐标代入反比例函数解析式,求得k的值,可得反比例函数表达式;
(2)①连接CC′交AB于点D.由轴对称的性质,可知AB垂直平分OC′,当a=4时,利用函数解析式可分别求出点A、B、C、D的坐标,于是可得AB和CD的长度,即可求得△ABC的面积;
②由△AMC与△AMC′的面积相等,得到C和C′到直线MA的距离相等,从而得到C、A、C′三点共线,故,又由AP=PN,得到=a+1,解方程即可得到结论.
详解:(1)把M(-3,m)代入y=x+1,则m=-2.
将(-3,-2)代入,得k=6,则反比例函数解析式是:;
(2)①连接CC′交AB于点D.则AB垂直平分CC′.
当a=4时,A(4,5),B(4,1.5),则AB=3.5.
∵点Q为OP的中点,∴Q(2,0),∴C(2,3),则D(4,3),
∴CD=2,∴×3.5×2=3.5,则=3.5;
②∵△AMC与△AMC′的面积相等,
∴C和C′到直线MA的距离相等,∴C、A、C′三点共线,∴.
又∵AP=PN,∴=a+1,解得a=3或a=-4(舍去),
∴当△AMC与△AMC′的面积相等时,a的值为3.
科目:初中数学 来源: 题型:
【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:
①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时;
③乙走了8km后遇到甲; ④乙出发6分钟后追上甲.
其中正确的有_____________(填所有正确的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线y=-x+b交折线O-A-B于点E.
(1)在点D运动的过程中,若△ODE的面积为S,求S与b的函数关系式,并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;
(3)问题(2)中的四边形DMEN中,ME的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 若AP=BP,则点P是线段的中点 B. 若点C在线段AB上,则AB=AC+BC
C. 若AC+BC>AB,则点C一定在线段AB外 D. 两点之间,线段最短
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线,直线和直线交于点C、D,直线上有一点P.
(1)如图1,点P在C、D之间运动时,∠PAC、∠APB、∠PBD之间有什么关系?并说明理由。
(2)若点P在C、D两点外侧运动时(P点与C、D不重合,如图2、3),试直接写出∠PAC、∠APB、∠PBD之间有什么关系,不必写理由。
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市今年中考体育测试,其中男生测试项目有1000米跑、立定跳远、掷实心球、一分钟跳绳、引体向上五个项目.考生须从这五个项目中选取三个项目,要求:1000米跑必选,立定跳远和掷实心球二选一,一分钟跳绳和引体向上二选一.
(1)写出男生在体育测试中所有可能选择的结果;
(2)请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1计算:;
(2)解不等式组
请结合题意填空,完成本题的解答:
解不等式(1),得______________.
解不等式(2),得_______________.
把不等式(1)和(2)的解集在数轴上表示出来
∴原不等式组的解集为_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查,其中问卷设置以下选项(被调查者只能选择其中的一项)A.出台相关法律法规 B.控制用水大户数量 C.推广节水技改和节水器具 D.用水量越多,水价越高. E.其他
根据调查结果制作了统计图表的一部分如下:
(1)此次抽样调查的人数为人;
(2)结合上述统计图表可得m=;n= .
(3)请根据以上信息直接补全条形统计图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com