精英家教网 > 初中数学 > 题目详情
17.已知关于x的一元二次方程x2+2kx+k2-k=0(k>0).问x=0可能是方程一个根吗?若是,求出k值及方程的另一个根,若不是,请说明理由.

分析 将x=0代入原方程可得出关于k的一元二次方程,解之可得出k的值,结合k>0即可确定k值,将k值代入原方程,利用因式分解法解一元二次方程即可得出方程的另一个根,此题得解.

解答 解:将x=0代入原方程得:k2-k=0,
解得:k=0或k=1,
∵k>0,
∴k=1,
∴x=0能是方程一个根.
把k=1代入原方程得:x2+2x=x(x+2)=0,
解得:x1=0,x2=-2.
∴方程的另一个根为x=-2.

点评 本题考查了一元二次方程的解以及因式分解法解一元二次方程,将x=0代入原方程求出k值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,在?ABCD中,下列结论错误的是(  )
A.∠1=∠2B.∠1=∠3C.AB=CDD.∠BAD=∠BCD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:3x2-3($\frac{1}{3}$x2-2x+1)+4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,有两个长度相等(BC=EF)的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求证:∠ABC+∠DFE=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=x2+bx+c与x轴交A(-1,0)B(3,0)两点,直线l与抛物线交于A,C两点,其中C点的横坐标为2.
(1)求抛物线的解析式;
(2)求直线AC的函数表达式;
(3)若点M是线段AC上的点(不与A,C重合),过M作MF∥y轴交抛物线于F,交x轴于点H,设点M的横坐标为m,连接FA,FC,是否存在m,使△AFC的面积最大?若存在,求m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.

(1)则a=-4,b=3;并将这两个数在数轴上所对应的点A,B表示出来;
(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;
(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.
(温馨提示:M、N之间距离记作|MN|,点M、N在数轴上对应的数分别为m、n,则|MN|=|m-n|.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)(-3)×2-20÷(-4)+(-12)÷3
(2)已知|x-3|+(y+$\frac{1}{2}$)2=0,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.当x=-2时,求2(4x+x2)-(x2+3x)的值.

查看答案和解析>>

同步练习册答案