精英家教网 > 初中数学 > 题目详情
2.如图,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,速度为每秒2个单位长度.
(1)填空:当t=4.5或12.5秒时,△CBD是直角三角形;
(2)若△CBD是等腰三角形,求t的值.

分析 (1)根据CD=速度×时间,得到CD,利用勾股定理列式求出AC,再分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(2)分①CD=BC时,CD=15;②CD=BD时,根据等腰三角形的性质、直角三角形的性质可求CD;③BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF;依此解答.

解答 解:(1)CD=2t,
∵∠ABC=90°,AB=20,BC=15,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=25,
AD=AC-CD=25-2t;
①∠CDB=90°时,S△ABC=$\frac{1}{2}$AC•BD=$\frac{1}{2}$AB•BC,
即$\frac{1}{2}$×25BD=$\frac{1}{2}$×20×15,
解得BD=12,
∴CD=$\sqrt{B{C}^{2}-B{D}^{2}}$=9,
t=9÷2=4.5;
②∠CBD=90°时,点D和点A重合,
t=25÷2=2.5.
综上所述,t=4.5或12.5秒时,△CBD是直角三角形

(2)①CD=BC时,CD=15,t=15÷2=7.5;
②CD=BD时,∠C=∠DBC,
∵∠C+∠A=∠DBC+∠DBA=90°,
∴∠A=∠DBA,
∴BD=AD,
∴CD=AD=$\frac{1}{2}$AC=12.5,
∴t=12.5÷2=6.25;
③BD=BC时,如图,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF;
则CF=DF,
∵BF=12,
∴CF=$\sqrt{B{C}^{2}-B{F}^{2}}$=9,
∴CD=2CF=9×2=18,
∴t=18÷2=9.
综上所述,t=6.25或7.5或9秒时,△CBD是等腰三角形.
故答案为:4.5或12.5秒.

点评 本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,难点在于要分情况讨论,作出图形更形象直观.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.列方程或方程组解应用题:
公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图阴影部分),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为20m2,求原正方形空地的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列实数$\frac{2}{3}$,$\sqrt{3}$,$\root{3}{8}$,$\sqrt{4}$,$\frac{π}{3}$,0.1,-0.010010001…,0,2.333…,其中无理数共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为α、b、c,且α=20,∠B=35°,解这个三角形.(精确到0.1,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线的顶点为(1,-$\frac{27}{8}$),与y轴交点C(0,-3),与x轴的交点为A,D(A在D的右侧).
(1)求该抛物线的函数解析式;
(2)求出A,D两点的坐标.
(3)若点M在抛物线上,且△MAD的面积等于△COD的面积的3倍,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,矩形RFGD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,且DE=2EF,△ABC中,边BC的长度为12cm,高AH为8cm,求矩形DEFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.让我们来共同探究“三角形的角平分线”的特殊性质:
如图,△ABC中,AD平分∠BAC,试探究S△ABD与S△ACD的比与图中线段有何关系.
(1)下面(图1)是小明的做法,请你完成他的步骤:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.∵AD平分∠BAC,∴DE=DF.而S△ABD=$\frac{1}{2}$AB×DE,S△ACD=$\frac{1}{2}$AC×DF.则$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=$\frac{()}{()}$;
(2)下面(图2)是小华的做法,请你完成他的步骤:过点A作AP⊥BC,垂足为P,而S△ABD=$\frac{1}{2}$×BD×AP,S△ACD=$\frac{1}{2}$×CD×AP,则$\frac{{S}_{△ABD}}{{S}_{△ACD}}$=$\frac{()}{()}$
(3)结合(1)、(2)的结论,可得“三角形的角平分线”的一个新的性质:
已知:在△ABC中,AD平分∠BAC,则线段AB、AC、BD、CD的关系为:$\frac{AB}{AC}$=$\frac{BD}{CD}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个实数根为另一个实数根的3倍,则称这样的方程为“立根方程”.
若方程ax2+bx+c=0是立根方程,且两点P(p+p2+1,q)、Q(-p2+5+q,q)均在二次函数y=ax2+bx+c上,请求方程ax2+bx+c=0的两个根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下面①②③④用拼图法验证“三角形内角和为180°”,能成为证明这个定理思路的有(  )
A.①②③④B.①③C.③④D.①②

查看答案和解析>>

同步练习册答案