精英家教网 > 初中数学 > 题目详情

【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.

(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.

(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.

【答案】(1)见解析;(2)见解析.

【解析】

试题(1)甲方案的付款=甲水果单价×购买量,乙方案的付款=乙水果单价×购买量+运输费,根据这两个关系分别列式即可;(2)将甲和乙的两种方案所需的付款数进行比较,从而确定购买量的范围.

解:(1)y=9x(x≥3000),y=8x+5000(x≥3000);

(2)y=y时,即9x=8x+5000,解得x=5000,∴当x=5000千克时,两种付款一样;

yy时,有解得3000≤x<5000,∴当3000≤x<5000时,选择甲种方案付款少;

y甲>y时,有x>5000,∴当x>5000千克时,选择乙种方案付款少.

综上所述,当购买量小于5000千克时,选用甲方案付费少;在购买量等于5000千克时,两种方案相同;在购买量大于5000千克时,选用乙方案付费少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF.

(1)求证:ADCF

(2)连接AF,试判断ACF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.
(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB10 cmBC8 cm.P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cma秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后APD的面积S1(cm2)与时间x()的函数关系图象;图③是点Q出发x秒后AQD的面积S2(cm2)与时间x()的函数关系图象

(1)参照图②,求ab及图②中c的值;

(2)d的值;

(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1y2与出发后的运动时间x()的函数关系式,并求出点P、点Q相遇时x的值;

(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1) 如图1,在一条笔直的公路两侧,分别有A、B两个村庄,现在要在公路l旁建一座火力发电厂,向A、B两个村庄供电,为使所用的电线最短,请问供电厂P应健在何处?画出图形,不写作法,保留作图痕迹;

(2) 如图2,若要向4个村庄A、B、C、D供电,供电厂P又该建在何处能使所用电线最短呢?画出图形,不写作法,保留作图痕迹

(3)A、B、C、D如图3,连接AC并延长到E,使CE=AC,连接BD并反向延长到F,不写作法,保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,B,C两点把线段AD分成2:5:3三部分,MAD的中点,BM=6cm,求CMAD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.

类别

时间t(小时)

人数

A

t0.5

5

B

0.5t1

20

C

1t1.5

a

D

1.5t2

30

E

t2

10

请根据图表信息解答下列问题:

(1)a=   

(2)补全条形统计图;

(3)小王说:我每天的锻炼时间是调查所得数据的中位数,问小王每天进行体育锻炼的时间在什么范围内?

(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+6x与x轴交于点O,A,顶点为B,动点E在抛物线对称轴上,点F在对称轴右侧抛物线上,点C在x轴正半轴上,且EF OC,连接OE,CF得四边形OCFE.

(1)求B点坐标;
(2)当tan∠EOC= 时,显然满足条件的四边形有两个,求出相应的点F的坐标;
(3)当0<tan∠EOC<3时,对于每一个确定的tan∠EOC值,满足条件的四边形OCFE有两个,当这两个四边形的面积之比为1:2时,求tan∠EOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在△ABCC=90°,AD平分∠BAC,DEABE,则下列结论:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案