精英家教网 > 初中数学 > 题目详情

【题目】南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离ABa,则此时大桥主架顶端离水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

【答案】C

【解析】

RtABDRtABC中,由三角函数得出BCatanαBDatanβ,得出CDBC+BDatanα+atanβ即可.

RtABDRtABC中,ABatanαtanβ

BCatanαBDatanβ

CDBC+BDatanα+atanβ

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A,点C在反比例函数yk0x0)的图象上,ABx轴于点BOCAB于点D,若CDOD,则AODBCD的面积比为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点.另一边交的延长线于点

1)观察猜想:线段与线段的数量关系是

2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:

3)拓展延伸:如图3,将(2)中的正方形改为矩形,且使三角板的一边经过点,其他条件不变,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解市民对全市创文工作的满意程度,娄星区某中学数学兴趣小组在娄底城区范围内进行了抽样调查,将调查结果分为非常满意,满意,一般,不满意四类,回收、整理好全部问卷后,绘制了两幅不完整的统计图1、图2,结合图中信息,回答:

1)此次共调查了多少名市民?

2)将两幅统计图中不完整的部分补充完整;

3)若我市城区共有480000人口,请估算我市对创文工作“非常满意和满意”的市民人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:

(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;

(2)求出最低费用,并说明费用最低时的调配方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+2m1x2mm0.5)的最低点的纵坐标为﹣4

1)求抛物线的解析式;

2)如图1,抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于点CD为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;

3)如图2,平移抛物线yx2+2m1x2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点EF(直线PEPF不与y轴平行),求证:直线EF恒过某一定点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yx2+bx的对称轴为x1,若关于x的一元二次方程x2+bxt0(为实数)在﹣1x4的范围内有解,则t的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB3BC4,半径为1的动圆圆心MA点出发,沿着AB方向以1个单位长度/每秒的速度匀速运动,同时动点N从点B出发,沿着BD方向也以1个单位长度/每秒的速度匀速运动,设运动的时间为t秒(0≤t≤2.5),以点N为圆心,NB的长为半径的⊙NBDAB的交点分别为EF,连结EFME

1)①当t   秒时,⊙N恰好经过点M;②在运动过程中,当⊙MABD的边相切时,t   秒;

2)当⊙M经过点B时,①求NAD的距离;②求⊙NAD截得的弦长;

3)若⊙N与线段ME只有一个公共点时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABE中,∠B90°,以AB为直径的OAE于点CCE的垂直平分线FDBE于点D,连接CD

1)判断CDO的位置关系,并证明;

2)若AC6CE8,求O的半径.

查看答案和解析>>

同步练习册答案