精英家教网 > 初中数学 > 题目详情
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥精英家教网BC,垂足为F
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)求图中阴影部分的面积.
分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;
(2)由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;
(3)连接OE,求得CF,EF的长,从而利用S直角梯形FDOE-S扇形OED求得阴影部分的面积.
解答:精英家教网证明:(1)连接DO.
∵△ABC是等边三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等边三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°-∠C=30°,(2分)
∴∠FDO=180°-∠ADO-∠CDF=90°,
∴DF为⊙O的切线;(3分)

(2)∵△OAD是等边三角形,
∴AD=AO=
1
2
AB=2.
∴CD=AC-AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=
1
2
CD=1.
∴DF=
CD2-CF2
=
3
;(5分)

(3)连接OE,由(2)同理可知CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=
1
2
(EF+OD)•DF=
3
3
2

∴S扇形OED=
60π×22
360
=
3

∴S阴影=S直角梯形FDOE-S扇形OED=
3
3
2
-
3
.(7分)
点评:此题考查学生对切线的判定及扇形的面积等知识点的掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边△ABC的边长为6,点D、E分别在AB、AC上,且AD=AE=2,直线l过点A,且l∥BC,若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设F点运动的时间为t秒,当t>0时,直线DF交l于点G,GE的延长线与BC的延长线交于点H,AB与GH相交于点O.
(1)当t为何值时,AG=AE?
(2)请证明△GFH的面积为定值;
(3)当t为何值时,点F和点C是线段BH的三等分点?

查看答案和解析>>

科目:初中数学 来源: 题型:

13、已知:如图,P是等边三角形ABC内部一点,且∠APC=117°,∠BPC=130°,
求:以AP、BP、CP为边的三角形三内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点I在x轴上,以I为圆心、r为半径的半圆I与x轴相交于点A、B,与y轴相精英家教网交于点D,顺次连接I、D、B三点可以组成等边三角形.过A、B两点的抛物线y=ax2+bx+c的顶点P也在半圆I上.
(1)证明:无论半径r取何值时,点P都在某一个正比例函数的图象上.
(2)已知两点M(0,-1)、N(1、0),且射线MN与抛物线y=ax2+bx+c有两个不同的交点,请确定r的取值范围.
(3)请简要描述符合本题所有条件的抛物线的特征.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,点C在线段AB上,分别以AC、BC为一边作为等边△ACM和等边△BCN,连接AN、BM.
(1)求证:AN=BM;
(2)设AN、BM相交于点D,求证:∠ADB=120°;
(3)如果A、C、B三点不在同一直线上,那么AN=BM是否仍然成立?如果成立,加以证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

  已知:如图,以ABC的三边为边在BC的同一侧分别作三个等边三角形,即ABDBCEACF

  请回答下列问题:(不要求证明)

  (1)四边形ADEF是什么四边形?

  

  (2)ABC满足什么条件时,四边形ADEF是矩形.

  

  (3)ABC满足什么条件时,以ADEF为顶点的四边形不存在.

 

 

查看答案和解析>>

同步练习册答案