| A. | $\sqrt{2}$+1 | B. | $\sqrt{2}$-1 | C. | $\sqrt{2}+1$或$\sqrt{2}$-1 | D. | $\sqrt{2}$+1或$\sqrt{3}$+1 |
分析 如图1,连接OA,根据垂径定理得到AD=BD,CD过圆心,由勾股定理得到OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=1,于是得到CD=OC+OD=1+$\sqrt{2}$,如图2,连接OA,同理得到CD=OC-OD=$\sqrt{2}$-1.
解答
解:如图1,连接OA,
∵AC=BC=$\frac{1}{2}$AB=1,CD⊥AB,
∴AD=BD,CD过圆心,
∴OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=1,
∴CD=OC+OD=1+$\sqrt{2}$,
如图2,
连接OA,
∵AC=BC=$\frac{1}{2}$AB=1,CD⊥AB,
∴AD=BD,CD过圆心,
∴OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=1,
∴CD=OC-OD=$\sqrt{2}$-1,
综上所述:$\sqrt{2}+$1或$\sqrt{2}-$1.
故选C.
点评 本题考查了垂径定理,等腰三角形的性质,勾股定理.正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{140}{x}$+$\frac{140}{x-21}$=14 | B. | $\frac{140}{x}$+$\frac{140}{x+21}$=14 | C. | $\frac{280}{x}$+$\frac{280}{x+21}$=14 | D. | $\frac{280}{x}$+$\frac{280}{x-21}$=14 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com