【题目】某儿童游乐园推出两种门票收费方式:
方式一:购买会员卡,每张会员卡费用是元,凭会员卡可免费进园次,免费次数用完以后,每次进园凭会员卡只需元;
方式二:不购买会员卡,每次进园是元(两种方式每次进园均指单人)设进园次数为( 为非负整数) .
(1)根据题意,填写下表:
进园次数(次) | ··· | |||
方式一收费(元) | ··· | |||
方式二收费(元) | ··· |
(2)设方式一收费元,方式二收费元,分别写出关于的函数关系式;;
(3)当时,哪种进园方式花费少?请说明理由.
【答案】(1);(2),;(3)当时,方式一花费少,理由见解析.
【解析】
(1)根据两种收费方式分别列出等式计算即可;
(2)根据收费方式,方式一分和两部分,方式二利用“收费单次费用次数”即可得;
(3)结合题(2)的结论可得当时,关于x的函数表达式,再利用一次函数的性质求解即可得.
(1)当时,方式二收费为(元)
当时,方式一收费为(元)
当时,方式二收费为(元)
故答案为:100,250,400;
(2)由题意,当时,
当时,
即
当时,
故关于x的函数关系式为,关于x的函数关系式为;
(3)方式一花费少,理由如下:
由(2)可知,当时,,
则
记
因为
所以随的增大而减小
又时,,即
因此,当时,
故当时,方式一花费少.
科目:初中数学 来源: 题型:
【题目】已知,如图1,在中,对角线,,,如图2,点从点出发,沿方向匀速运动,速度为,过点作交于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动.设运动时间为,解答下列问题:
(1)当为何值时,点在线段的垂直平分线上?
(2)设四边形的面积为,试确定与的函数关系式;
(3)当为何值时,有最大值?
(4)连接,试求当平分时,四边形与四边形面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC为弦,点D为中点,过点D作DE⊥直线AC,垂足为E,交AB的延长线于点F
(1)求证:EF是⊙O的切线;
(2)若EF=4,sin∠F=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了调查同学们对学生会的满意度,随机抽取了部分同学作问卷调查:用“”表示“相 当满意”,“”表示“满意”,“”表示“比较满意”,“”表示“不满意”,下图是负责 调查同学根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少人;
(2)通过计算补全条形图;
(3)如果该学校有名学生,请你估计该校学生对学生会感到“相当满意”的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个矩形纸片放置在平面直角坐标系中,点点点是边上的一点(点不与点重合),沿着折叠该纸片,得点的对应点.
(1)如图①,当点落在边上时,求点的坐标;
(2)若点落在边的上方,与分别与边交于点.
①如图②,当时,求点的坐标;
②当时,求点的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.
(1)求证:ABCD是矩形;
(2)若AD=,cos∠ABE=,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.
年份 人数 地区 | 2017 | 2018 | 2019 |
东部 | 300 | 147 | 47 |
中部 | 1112 | 181 | |
西部 | 1634 | 916 | 323 |
(以上数据来源于国家统计局)
根据统计图表提供的信息,下面推断不正确的是( )
A.2018年中部地区农村贫困人口为597万人
B.2017﹣2019年,农村贫困人口数量都是东部最少
C.2016﹣2019年,农村贫困人口减少数量逐年增多
D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com