精英家教网 > 初中数学 > 题目详情
如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.
(1)若C(3,m),求m的值; 
(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;
(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,
AS-CSBT
的值变吗?若不变证明并求其值;若变化,请说明理由.
精英家教网
分析:(1)作CE⊥x轴于E,可证△OAB≌△EBC,再根据线段相互间的关系即可求出CE的长,即m的值;
(2)作GE⊥x轴于G,可以通过先求出AE与EB的关系,证明结论;
(3)连接CT,ST,ST交BC于M,可知
AS-CS
BT
的值为45°余弦的倒数,从而求解.
解答:解:(1)作CE⊥x轴于E,精英家教网
易证△OAB≌△EBC,
∴OB=OE-BE=3-OA=2,
∴CE=2,即m=2;
(2)作GE⊥x轴于G,
∵BE=BF,
∴∠1=∠2,
∵∠2=∠MFC,∠MFC+∠3=90°,∠4+∠1=90°
∴∠3=∠4,
∴EG=GB,
AE=
2
EB,
∴AC=
2
AB,
∵AE+EB=AB,
∴AE=(2-
2
)AB,
∴AC+AE=2AB;
(3)连接CT,ST,ST交BC于M,
则AS=TS,SC=SM,∠STA=45°,
∴AS-CS=MT,
AS-CS
BT
=
1
BT
MT
=
1
COS45°
=
2

AS-CS
BT
的值不变.
点评:考查了一次函数综合题,考查了三角形全等的判定和性质,等腰直角三角形的性质,勾股定理和三角函数的知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.那么,在y轴和直线上是否还存在符合条件的点P和点M呢?请你写出其它符合条件的点P的坐标
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,直线l平分∠BOC,∠1=40°,则∠2=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,直线PQ分别交AB、CD于点F、E,EG是∠DEF的平分线,交AB于点G.若∠PFA=40°,那么∠EGB等于(  )
A、80°B、100°C、110°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,AB∥CD,直线HE⊥MN交MN于E,∠1=130°,则∠2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.
(1)求∠DOE的度数;
(2)如果∠AOD=51°12′,求∠BOE的度数.

查看答案和解析>>

同步练习册答案