精英家教网 > 初中数学 > 题目详情

【题目】如图,分别延长ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.

求证:CG∥AH.

【答案】证明:在ABCD中,
AB∥CD,AD∥CB ,AD=CB,
∴∠E=∠F,∠EDG=∠DCH=∠FBH,
DE=BF
∴△EGD≌△FHB(AAS) ,
∴DG=BH,
∴AG=HC ,
又∵AD∥CB,
∴四边形AGCH为平行四边形,
∴AH∥CG.
【解析】方法不唯一,如:证明四边形AGCH为平行四边形,可通过证明△EGD≌△FHB,已知DE=BF,再根据ABCD得出两组角相等即可证明△EGD≌△FHB,即可求证AH∥CG.
【考点精析】利用平行四边形的判定与性质对题目进行判断即可得到答案,需要熟知若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】老师在计算学期平均分的时候按照如下标准,作业占10%,测验占20%,期中考试占30%,期末考试占40%,小丽的成绩如表所示,则小丽的平均分是________分.

学生

作业

测验

期中考试

期未考试

小丽

80

75

70

90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=,则称点P′是点P关于⊙O的“反演点”.

如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读填空:请你阅读芳芳的说理过程并填出理由:
(1)如图1,已知AB∥CD.
求证:∠BAE+∠DCE=∠AEC.
理由:作EF∥AB,则有EF∥CD(
∴∠1=∠BAE,∠2=∠DCE()
∴∠AEC=∠1+∠2=∠BAE+∠DCE()
思维拓展:

(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAE=m°,∠ABC=n°,求∠BED的度数.(用含m、n的式子表示)

(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是(用含m、n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面文字:
对于(﹣5 )+(﹣9 )+17 +(﹣3
可以如下计算:
原式=[(﹣5)+(﹣ )]+[(﹣9)+(﹣ )]+(17+ )+[(﹣3)+(﹣ )]
=[(一5)+(﹣9)+17+(一3)]+[(﹣ )+(﹣ )+ +(﹣ )]
=0+(﹣1
=﹣1
上面这种方法叫拆项法,你看懂了吗?
仿照上面的方法,请你计算:(﹣2000 )+(﹣1999 )+4000 +(﹣1 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为(  )


A.6
B.7
C.8
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务:

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并成为三大数学王子.

阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.

阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BCAB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.

M是的中点,MA=MC.

任务:

(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图3,已知等边ABC内接于O,AB=2,D为上一点,ABD=45°,AEBD于点E,则BDC的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数和反比例函数的图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)观察图象,直接写出方程的解;

(3)求△AOB的面积;

(4)观察图象,直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x、y均为正整数,且2x2y=128,则x+y的值为(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步练习册答案