【题目】如图,一个机器人从点O出发,向正东方向走3m到达点,再向正北方向走6m到达点,再向正西方向走9m到达点,再向正南方向走12m到达点,再向正东方向走15m到达点,按如此规律走下去,当机器人走到点时,点的坐标是________.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, tan∠ABC=,∠C=45°,点D、E分别是边AB、AC上的点,且DE∥BC,BD=DE=5,动点P从点B出发,沿B-D-E-C向终点C运动,在BD-DE上以每秒5个单位长度的速度运动,在EC上以每秒个单位长度的速度运动,过点P作PQ⊥BC于点Q,以PQ为边作正方形PQMN,使点B、点N始终在PQ同侧. 设点P的运动时间为()(>0),正方形PQMN与△ABC重叠部分图形的面积为S.
(1)当点P在BD-DE上运动时,用含的代数式表示线段DP的长.
(2)当点N落在AB边上时,求的值.
(3)当点P在DE上运动时,求S与之间的函数关系式.
(4)当点P出发时,有一点H从点D出发,在线段DE上以每秒5个单位长度的速度沿D-E-D连续做往返运动,直至点P停止运动时,点H也停止运动.连结HN,直接写出HN与DE所夹锐角为45°时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,以为直径的⊙交于点,过点作⊙的切线交于点,连接.
(1)求证:;
(2)连接,并延长交圆于点,.
填空:①当__________时,四边形是菱形;
②当的长=__________时,四边形是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.
(1)求证:BE=CF.
(2)当四边形ACDE为菱形时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为,小红在剩下的3个小球中随机摸出一个小球,记下数字为,这样确定了点的坐标.
(1)画树状图或列表,写出点所有可能的坐标;
(2)小明和小红约定做一个游戏,其规则为:若在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB边上一动点(点D与点A、B不重合),联结CD,过点D作DE⊥DC交边BC于点E.
(1)如图,当ED=EB时,求AD的长;
(2)设AD=x,BE=y,求y关于x的函数解析式并写出函数定义域;
(3)把△BCD沿直线CD翻折得△CDB',联结AB',当△CAB'是等腰三角形时,直接写出AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于两点,与轴交于点,且,.
(1)求抛物线的表达式;
(2)点是抛物线上一点.
①在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;
②连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com