精英家教网 > 初中数学 > 题目详情

【题目】如图,点的直径的延长线上,点上,且AC=CD∠ACD=120°.

1)求证:的切线;

2)若的半径为2,求图中阴影部分的面积.

【答案】1)见解析

2)图中阴影部分的面积为π.

【解析】

1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;

(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.

1)证明:连接OC

ACCD,∠ACD120°

∴∠A=∠D30°

OAOC

∴∠2=∠A30°

∴∠OCD=∠ACD-∠290°

OCCD

CD是⊙O的切线;

2)解:∠1=∠2+∠A60°

S扇形BOC

RtOCD中,∠D30°

OD2OC4

CD

SRtOCDOC×CD×2×

∴图中阴影部分的面积为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, 是一块边长为4米的正方形苗圃,园林部门将其改造为矩形的形状,其中点边上,点的延长线上, 的长为米,改造后苗圃的面积为平方米.

(1) 之间的函数关系式为 (不需写自变量的取值范围);

(2)根据改造方案,改造后的矩形苗圃的面积与原正方形苗圃的面积相等,请问此时的长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.

(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;

(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一次函数的图象与反比例函数)的图象相交于AB两点(AB的右侧).

1)当A42)时,求反比例函数的解析式及B点的坐标;

2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

3)当Aa,﹣2a+10),Bb,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BCy轴于点D.若,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,⊙O是△ABC的内切圆,三个切点分别为DEF,若BF2AF3,则△ABC的面积是

A.6B.7C.D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图①,在等边三角形ABC内有一点P,且PA2PB=PC1,求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△PPB是等边三角形,而△PPA又是直角三角形(由勾股定理的逆定理可证),可得∠APB °,所以∠BPC=∠APB °,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为 ,问题得到解决.

1)根据李明同学的思路填空:∠APB °,∠BPC=∠APB °,等边三角形ABC的边长为

2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PAPBPC1.求∠BPC的度数和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售智能机器人,售价每台为10万元,进价y与销售量x的函数关系式如图所示。

(1)x=10时,公司销售机器人的总利润为___万元;

(2)10x30时,求出yx的函数关系式;

(3)问:销售量为多少台时,公司销售机器人的总利润为37.5万元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+的图象与反比例函数yk0)的图象交于AB两点,过点Ax轴的垂线,垂足为M,△AOM面积为1

1)求反比例函数的解析式;并直接写出不等式的解集.

2)在x轴上求一点P,使|PAPB|的值最大,并求出其最大值和P点坐标.

3)连接OB,求三角形AOB的面积.

查看答案和解析>>

同步练习册答案