精英家教网 > 初中数学 > 题目详情

关于x的方程x2-2(k-1)x+k2=0有两个不相等的实数根x1,x2
(1)求k的取值范围.
(2)若k≠0,试说明此方程有两个负根.
(3)在(2)的条件下,若|x1|-|x2|=4,求k的值.

解:(1)根据题意得△=4(k-1)2-4k2>0,
解得k<
(2)∵k<,k≠0,
∴x1+x2=2(k-1)<0,x1•x2=k2>0,
∴x1,x2都为负数,即此方程有两个负根;
(3)∵x1,x2都为负数,|x1|-|x2|=4,
∴-x1+x2=4,
∴(x1+x22-4x1x2=16,
∴4(k-1)2-4k2=16,
∴k=-
分析:(1)根据判别式的意义得到△=4(k-1)2-4k2>0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=2(k-1),x1•x2=k2,由于k<,k≠0,所以x1+x2=2(k-1)<0,x1•x2=k2>0,然后根据有理数的性质得到x1,x2都为负数;
(3)先根据x1,x2都为负数,去绝对值得到-x1+x2=4,两边平方后变形得到(x1+x22-4x1x2=16,则4(k-1)2-4k2=16,然后解方程即可.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案