精英家教网 > 初中数学 > 题目详情
(2012•营口)如图,直线y=-
43
x+8
分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴、y轴于C、D两点.
(1)求点C的坐标;
(2)求△BCD的面积.
分析:(1)由直线y=-
4
3
x+8,分别交x轴、y轴于A、B两点,即可求得点A与B的坐标,即可得OA,OB,由勾股定理即可求得AB的长,由CD是线段AB的垂直平分线,可求得AE与BE的长,易证得△AOB∽△AEC,然后由相似三角形的对应边成比例,即可求得AC的长,继而求得点C的坐标;
(2)易证得△AOB∽△DEB,由相似三角形的对应边成比例,即可求得BD的长,又由S△BCD=
1
2
BD•OC,即可求得△BCD的面积.
解答:解:(1)∵直线y=-
4
3
x+8,分别交x轴、y轴于A、B两点,
当x=0时,y=8;当y=0时,x=6.
∴OA=6,OB=8.
在Rt△AOB中,AB=
OA2+OB2
=10,
∵CD是线段AB的垂直平分线,
∴AE=BE=5.
∵∠OAB=∠CAE,∠AOB=∠AEC=90°,
∴△AOB∽△AEC,
OA
AE
=
AB
AC

6
5
=
10
AC

∴AC=
25
3

∴OC=AC-OA=
7
3

∴点C的坐标为(-
7
3
,0);

(2)∵∠ABO=∠DBE,∠AOB=∠BED=90°,
∴△AOB∽△DEB,
OB
BE
=
AB
BD

8
5
=
10
BD

∴BD=
25
4

∴S△BCD=
1
2
BD•OC=
1
2
×
25
4
×
7
3
=
175
24
点评:此题考查了相似三角形的判定与性质、点与一次函数的性质、勾股定理以及线段垂直平分线的性质.此题难度较大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•营口)如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•营口)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,-1)、B(-1,1)、C(0,-2).
(1)点B关于坐标原点O对称的点的坐标为
(1,-1)
(1,-1)

(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C;
(3)求过点B1的反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•营口)如图,实线部分为某月牙形公园的轮廓示意图,它可看作是由⊙P上的一段优弧和⊙Q上的一段劣弧围成,⊙P与⊙Q的半径都是2km,点P在⊙Q上.
(1)求月牙形公园的面积;
(2)现要在公园内建一块顶点都在⊙P上的直角三角形场地ABC,其中∠C=90°,求场地的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•营口)如图,在等腰梯形ABCD中,AD∥BC,过点D作DF⊥BC于F.若AD=2,BC=4,DF=2,则DC的长为
5
5

查看答案和解析>>

同步练习册答案