精英家教网 > 初中数学 > 题目详情

【题目】如下图,在平面直角坐标系中,ABO绕点A顺时针旋转到AB1C1的位置,BO分别落在点B1C1,B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,C2x轴上,A1B1C2绕点C2顺时针旋转到A2B2C2的位置,A2x轴上,依次进行下去….若点A(,0),B(0,2),B2019的坐标为_____

【答案】6058,0

【解析】

首先根据已知求出三角形三边长度,然后通过旋转发现,BB2B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2019的坐标.

解:∵A0),B02),
RtAOB中,AB=
OA+AB1+B1C2=+2+=6
B2的横坐标为:6,且B2C2=2,即B262),
B4的横坐标为:2×6=12
∴点B2019的横坐标为:2018÷2×6++=6058,点B2019的纵坐标为:0
B2019的坐标是(60580).
故答案为:(60580).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD是正方形, GBC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.给出以下结论:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,AB=AD. ∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.

图1 图2 图3

(1)思路梳理

将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为

(2)类比引申

如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.

(3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=30°,∠B=60°CF平分∠ACB

1)求∠ACE的度数.

2)若CDAB于点D,∠CDF=75°,求证:△CFD是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知中,厘米,分别从点、点同时出发,沿三角形的边运动,已知点的速度是1厘米/秒的速度,点的速度是2厘米/秒,当点第一次到达点时,同时停止运动.

1同时运动几秒后,两点重合?

2同时运动几秒后,可得等边三角形

3边上运动时,能否得到以为底边的等腰,如果存在,请求出此时运动的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O是线段AD的中点,分别以AODO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接ACBD,相交于点E,连接BC

1)证明:⊿ABC ≌ ⊿DCB

2)求∠AEB的大小.

3)如图2△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB△OCD不能重叠),求∠AEB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD为平行四边形延长AD到E使DE=AD连接EBECDB添加一个条件不能使四边形DBCE成为矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是矩形ABCD的边上一动点,矩形两边长ABBC长分别为1520,那么P到矩形两条对角线ACBD的距离之和是(  )

A.6B.12C.24D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于三个数abc,用max{abc}表示这三个数中最大数,例如:max{-210}=1max

解决问题:

1)填空:max{123}=______,如果max{342x-6}=2x-6,则x的取值范围为______

2)如果max{2x+2-3x-7}=5,求x的值;

3)如图,在同一坐标系中画出了三个一次函数的图象:y=-x-3y=x-1y=3x-3请观察这三个函数的图象,

①在图中画出max{-x-3x-13x-3}对应的图象(加粗);

max{-x-3x-13x-3}的最小值为______

查看答案和解析>>

同步练习册答案