精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠A=30°,∠B=60°CF平分∠ACB

1)求∠ACE的度数.

2)若CDAB于点D,∠CDF=75°,求证:△CFD是直角三角形.

【答案】1)∠ACE=45°;(2)详见解析.

【解析】

1)先根据内角和定理求得∠ACB=90°,再由角平分线性质可得答案;
2)根据CDAB知∠BCD=90°-B=30°,∠FCD=ECB-BCD=15°,结合∠CDF=75°可得∠CFD=180°-FCD-CDF=90°,即可得证.

解:(1)∵∠A=30°,∠B=60°
∴∠ACB=180°-A-B=90°
CE平分∠ACB
∴∠ACE=BCE=ACB=45°
2)∵CDAB
∴∠CDB=90°
∴∠BCD=90°-B=30°
∴∠FCD=ECB-BCD=15°
∵∠CDF=75°
∴∠CFD=180°-FCD-CDF=90°
∴△CFD是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,ABAC∠BAC50°∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).

(1)求抛物线的解析式;

(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.

是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;

∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90 AB=16cmBC=12cmPQ是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

1)出发2秒后,求PQ的长;

2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?

3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,点上,过点的切线,延长,使,连接,与交于点.若的半径为,则的外接圆的半径为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.

1)请将()中被墨水污染的部分补充出来:________

2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,ABO绕点A顺时针旋转到AB1C1的位置,BO分别落在点B1C1,B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,C2x轴上,A1B1C2绕点C2顺时针旋转到A2B2C2的位置,A2x轴上,依次进行下去….若点A(,0),B(0,2),B2019的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半径为2的O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的内接正十边形的一边,平分于点,则下列结论正确的有(

;②;③;④

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案