分析 连结BC交OA于D,如图,根据菱形的性质得BC⊥OA,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=$\sqrt{3}$BD,设BD=t,则OD=$\sqrt{3}$t,B(t,$\sqrt{3}$t),利用二次函数图象上点的坐标特征得2$\sqrt{3}$t2=$\sqrt{3}$t,得出BD=$\frac{1}{2}$,OD=$\frac{\sqrt{3}}{2}$,然后根据菱形的性质得出C点坐标.
解答
解:连结BC交OA于D,如图,
∵四边形OBAC为菱形,
∴BC⊥OA,
∵∠OBA=120°,
∴∠OBD=60°,
∴OD=$\sqrt{3}$BD,
设BD=t,则OD=$\sqrt{3}$t,
∴B(t,$\sqrt{3}$t),
把B(t,$\sqrt{3}$t)代入y=2$\sqrt{3}$x2得2$\sqrt{3}$t2=$\sqrt{3}$t,解得t1=0(舍去),t2=$\frac{1}{2}$,
∴BD=$\frac{1}{2}$,OD=$\frac{\sqrt{3}}{2}$,
故C点坐标为:(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
故答案为:(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
点评 本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD的长是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3倍 | B. | $\frac{1}{2}$ | ||
| C. | $\frac{1}{3}$ | D. | 不知AB的长度,无法判断 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1000名学生 | B. | 被抽取的100名学生 | ||
| C. | 1000名学生的身高 | D. | 被抽取的100名学生的身高 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -2x2-xy-3y2 | B. | 2x2+xy+3y2 | C. | 8x2-3xy+y2 | D. | -8x2+3xy-y2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com