精英家教网 > 初中数学 > 题目详情

【题目】计算:

(1)4﹣8+6﹣10;

(2)(+)×(﹣24);

(3)(﹣2)2×5﹣(﹣2.5)÷0.5;

(4)﹣32+(﹣24)÷(﹣4)﹣(﹣3)3×(﹣).

【答案】(1)-8;(2)-14;(3)25;(4)-21.

【解析】

(1)直接计算加减即可;(2)利用乘法分配律,用括号里的每一项分别乘以-24,再求和即可;(3)先算乘方,后算乘除,最后算加减即可;(4) 先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

(1)原式=(4+6)+(﹣8﹣10)

=10+(﹣18)

=﹣8;

(2)原式=×(﹣24)﹣×(﹣24)+×(﹣24)

=﹣12+18﹣20

=﹣14;

(3)原式=4×5﹣(﹣5)

=20+5

=25;

(4)原式=﹣9+6﹣(﹣27)×(﹣

=﹣3﹣18

=﹣21.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2018年俄罗斯世界杯组委会对世界杯比赛用球进行抽查,随机抽取了100个足球,检测每个足球的质量是否符合标准,超过或不足部分分别用正、负数来表示,记录如表:

与标准质量的差值(单位:克)

﹣4

﹣2

0

1

3

6

个数

10

13

30

25

15

7

(1)平均每个足球的质量比标准质量多还是少?用你学过的方法合理解释;

(2)若每个足球标准质量为420克,则抽样检测的足球的总质量是多少克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是(  )

A. 九(1)班的学生人数为40 B. m的值为10

C. n的值为20 D. 表示“足球”的扇形的圆心角是70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.
(1)当b=3时, ①求直线AB的解析式;
②若点P′的坐标是(﹣1,m),求m的值;
(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以CM、DM为直径作两个大小不同的 ⊙O1和⊙O2 , 则图中阴影部分的面积为(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各式:定义一种新运算”:

13=1×4+3=7,3﹣1=3×4﹣1=11,54=5×4+4=24

4(﹣3)=4×4﹣3=13,(﹣2)(﹣5)=(﹣2)×4﹣5=﹣13,……

(1)写出一般结论:ab=_____

(2)如果a≠b,那么ab_____ba(“=”“≠”)

(3)先化简,再求值:(a﹣b)⊙(2a+3b).其中a=﹣,b=2019.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,BAD的平分线交BC于E,点F在AD上,且AF=AB,连接EF.

(1)判断四边形ABEF的形状并证明;

(2)若AE、BF相交于点O,且四边形ABEF的周长为20,BF=6,求AE的长度及四边形ABEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是(
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图EFAD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整

EFAD,(   

∴∠2=   .(两直线平行同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

同步练习册答案