19£®Èçͼ¢ÙÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=-$\frac{2}{3}$x+2ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬Å×ÎïÏßy=ax2+bx+c¾­¹ýA¡¢BÁ½µã£¬¶Ô³ÆÖáÊÇÖ±Ïßx=1£¬µãPÊÇÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬£¨²»ÓëµãA¡¢BÖØºÏ£©
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©µãPÔÚʲôλÖÃʱ£¬¡÷APBÃæ»ý×î´ó£¿Çó´ËʱµãPµÄ×ø±ê£»
£¨3£©Èçͼ¢Ú£¬ÒÔAPΪ±ß×÷Õý·½ÐÎAPMN£¬µ±¶¥µãM»òNÇ¡ºÃÂäÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏʱ£¬Çó³ö¶ÔÓ¦µÄµãPµÄ×ø±ê£®

·ÖÎö £¨1£©ÏÈÇó³öA¡¢BÁ½µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Ìõ¼þ¶Ô³ÆÖṫʽÁз½³Ì×é½â¾öÎÊÌ⣮
£¨2£©Èçͼ1ÖУ¬ÉèP£¨m£¬-$\frac{2}{3}$m2+$\frac{4}{3}$m+2£©£¬×÷PQ¡ÎyÖá½»ABÓÚQ£¬ÔòQ£¨m£¬-$\frac{2}{3}$m+2£©£®¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮
£¨3£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ2ÖУ¬µ±µãNÔÚ¶Ô³ÆÖáÉÏʱ£¬×÷AG¡ÍOA£¬PG¡ÍAGÓÚG£¬NH¡ÍAGÓÚH£®¢ÚÈçͼ3ÖУ¬µ±µãMÔÚ¶Ô³ÆÖáÉÏʱ£¬×÷PG¡Í¶Ô³ÆÖáÓÚG£¬AH¡ÍPGÓÚH£®·Ö±ðÀûÓÃÈ«µÈÈý½ÇÐεÄÐÔÖÊ£¬Áгö·½³Ì½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÓÉy=-$\frac{2}{3}$x+2£¬Áîx=0µÃy=2£¬Áîy=0µÃx=3£¬
¡àB£¨0£¬2£©£¬A£¨3£¬0£©£¬
ÓÉÌâÒâ$\left\{\begin{array}{l}{c=2}\\{9a+3b+c=0}\\{-\frac{b}{2a}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{2}{3}}\\{b=\frac{4}{3}}\\{c=2}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{2}{3}$x2+$\frac{4}{3}$x+2£®

£¨2£©Èçͼ1ÖУ¬ÉèP£¨m£¬-$\frac{2}{3}$m2+$\frac{4}{3}$m+2£©£¬×÷PQ¡ÎyÖá½»ABÓÚQ£¬ÔòQ£¨m£¬-$\frac{2}{3}$m+2£©£®

¡àS¡÷PAB=$\frac{1}{2}$•£¨-$\frac{2}{3}$m2+$\frac{4}{3}$m+2+$\frac{2}{3}$m-2£©•3=-m2+3m=-£¨m-$\frac{3}{2}$£©2+$\frac{9}{4}$£¬
¡ß-1£¼0£¬
¡àm=$\frac{3}{2}$ʱ£¬¡÷PABÃæ»ý×î´ó£¬´ËʱP£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£®

£¨3£©¢ÙÈçͼ2ÖУ¬µ±µãNÔÚ¶Ô³ÆÖáÉÏʱ£¬×÷AG¡ÍOA£¬PG¡ÍAGÓÚG£¬NH¡ÍAGÓÚH£®

¡ßPA=AN£¬¡ÏG=¡ÏH=90¡ã£¬¡ÏPAG=¡ÏANH£¬
¡à¡÷APG¡Õ¡÷NAH£¬
¡àAG=NH=2£¬
µ±y=2ʱ£¬-$\frac{2}{3}$x2+$\frac{4}{3}$x+2=2£¬½âµÃx=2»ò0£¨ÉáÆú£©£¬
¡à´ËʱP£¨2£¬2£©£®

¢ÚÈçͼ3ÖУ¬µ±µãMÔÚ¶Ô³ÆÖáÉÏʱ£¬×÷PG¡Í¶Ô³ÆÖáÓÚG£¬AH¡ÍPGÓÚH£®

ÓÉ¡÷PAH¡Õ¡÷MPG£¬µÃAH=PG£¬ÉèP£¨m£¬-$\frac{3}{2}$m2+$\frac{4}{3}$m+2£©£¬
ÔòÓÐm-1=-$\frac{3}{2}$m2+$\frac{4}{3}$m+2£¬½âµÃm=$\frac{1+\sqrt{163}}{9}$»ò$\frac{1-\sqrt{163}}{9}$£¨ÉáÆú£©£®
´ËʱµãP×ø±ê£¨$\frac{1+\sqrt{163}}{9}$£¬$\frac{\sqrt{163}-8}{9}$£©£®
×ÛÉÏËùÊö£¬µ±µãP×ø±êΪ£¨2£¬2£©»ò£¨$\frac{1+\sqrt{163}}{9}$£¬$\frac{\sqrt{163}-8}{9}$£©Ê±£¬ÒÔAPΪ±ß×÷Õý·½ÐÎAPMN£¬µ±¶¥µãM»òNÇ¡ºÃÂäÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏ£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÔËÓá¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Õý·½ÐεÄÅж¨ºÍÐÔÖÊ¡¢½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ѧ»áÌí¼Ó³£Óø¨ÖúÏß¹¹ÔìÈ«µÈÈý½ÇÐνâ¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬¡÷ABD£¬¡÷AEC¶¼ÊǵȱßÈý½ÇÐΣ®ÈôCDÓëBEÏཻÓÚµãO£®ÇóÖ¤£º
£¨1£©BE=DC£»
£¨2£©¡ÏBOD=60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÅ×ÎïÏßy=-x2+bx+cÓëÖ±Ïßy=-4x+mÏཻÓÚµÚÒ»ÏóÏÞ²»Í¬µÄÁ½µã£¬A£¨5£¬n£©£¬B£¨3£¬9£©£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ËıßÐÎABCDÖУ¬¡ÏA=60¡ã£¬AD=2£¬AB=3£¬µãM£¬N·Ö±ðΪÏß¶ÎBC£¬ABÉϵ͝µã£¨º¬¶Ëµã£¬µ«µãM²»ÓëµãBÖØºÏ£©£¬µãE£¬F·Ö±ðΪDM£¬MNµÄÖе㣬ÔòEF³¤¶ÈµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{7}}{2}$B£®$\sqrt{7}$C£®$\sqrt{3}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª$\sqrt{2.1}$=1.449£¬$\sqrt{21}$=4.573£¬Ôò$\sqrt{21000}$µÄÖµÊÇ144.9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÒ»Ôª¶þ´Î·½³Ìx2+$\sqrt{b+2}$x+c=0µÄÁ½¸ù·Ö±ðΪx1£¬x2£¬Çҵ㣨x1£¬x2£©ÔÚ·´±ÈÀýº¯Êýy=$\frac{1}{x}$µÄͼÏóÉÏ£¬ÄÇôbµÄȡֵ·¶Î§Îªb¡Ý6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªµãDÊǵÈÑüÖ±½ÇÈý½ÇÐÎABCб±ßBCÉÏÒ»µã£¨²»ÓëµãBÖØºÏ£©£¬Á¬AD£¬Ïß¶ÎADÈÆµãAÄæÊ±Õë·½ÏòÐýת90¡ãµÃµ½Ïß¶ÎAE£¬Á¬CE£¬ÇóÖ¤£ºBD¡ÍCE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆË㣺
¢Ù$\sqrt{3}$£¨$\sqrt{12}$-$\sqrt{48}$£©
¢Ú£¨$\sqrt{6}$-2$\sqrt{15}$£©¡Á$\sqrt{3}$-6$\sqrt{\frac{1}{2}}$
¢Û½â·½³Ì×飺$\left\{\begin{array}{l}{x+y=5}\\{2x-y=1}\end{array}\right.$                   
¢Ü$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$
¢ÝÒÑÖª$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ ºÍ$\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$¶¼ÊÇ·½³Ìax-y=bµÄ½â£¬ÇóaÓëbµÄÖµ£®
¢Þ¼ÆË㣺-£¨¦Ð-3£©0-2$\sqrt{3}$+$\sqrt{27}$-$\sqrt{\frac{1}{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½âÏÂÁз½³Ì
£¨1£©25x2+10x+1=0¡¡      
£¨2£©£¨y+2£©2=£¨3y-1£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸