精英家教网 > 初中数学 > 题目详情

【题目】ab互为相反数,bc互为倒数,并且m的立方等于它本身。

(1)+ac.

(2)a>1,m<0,S=|2a-3b|-2|b-m|-|b+|,2a-S的值.

(3)m≠0,试讨论:x为有理数时|x+m|-|x-m|是否存在最大值?若存在求出这个最大值;若不存在,请说明理由.

【答案】1-1;(2-;(3)存在最大值,最大值为2

【解析】

1)先根据ab互为相反数,bc互为倒数,得出a+b=0bc=1,再代入所求代数式进行计算;
2)根据a1m的立方等于它本身,把S进行化简,再代入所求代数式进行计算;
3)根据若m≠0,可知m=±1,①当m=1时,代入|x+m|-|x-m|,再根据绝对值的性质去掉绝对值符号,求出代数式的值,
②同理,当m=-1时代入所求代数式,再根据绝对值的性质去掉绝对值符号,求出代数式的值,即可.

解:(1)∵ab互为相反数,bc互为倒数,

a+b=0bc=1
ac=-1

2)∵a1
b-12a-3b0b+0
m的立方等于它本身,且m0
m=-1b-m=b+10
s=2a-3b+2b+2+b+=2a+

2a-s=-

3)若m≠0,此时m=±1
①若m=1,则|x+m|-|x-m|=|x+1|-|x-1|
x≤-1
|x+1|-|x-1|=-x-1+x-1=-2
-1x≤1
|x+1|-|x-1|=x+1+x-1=2x
x1
|x+1|-|x-1|=x+1-x+1=2
∴当x为有理数时,存在最大值为2
②若m=-1
同理可得:当x为有理数时,存在最大值为2
综上所述,当m=±1x为有理数时,|x+m|-|x-m|存在最大值为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.

【应用】在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,AD2ABFAD的中点,作CEAB,垂足E在线段AB上,连接EFCF,则下列结论:(1) DCF=BCD(2)EFCF(3)SCDFSCEF(4)DFE3AEF.其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.

1)两船同时航行1小时,求此时两船之间的距离;

2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;

3)求两船从开始航行到两船相距12海里,需要多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为,向西记为,单位:千米):

1)小王最后是否回到了总部?

2)小王离总部最远是多少米?在总部的什么方向?

3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蜗牛从某点O开始沿东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬行的各段路程依次为(单位:厘米):.问:

1)蜗牛最后是否回到出发点O

2)蜗牛离开出发点O最远是多少厘米?

3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则蜗牛可得到多少粒芝麻?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习过绝对值之后,我们知道:|52|表示 5 2 的差的绝对值,实际上也可理解为 5 2 两数在数轴上所对应的两点之间的距离:|5+2|表示 5 与-2 的差的绝对值,实际上也可理解为 5 与-2 两数在数轴上所对应的两点之间的距离. 试探究解决以下问题:

|x+6|可以理解为 两数在数轴上所对应的两点之间的距离;

⑵找出所有符合条件的整数 x,使|x+1|+|x2|=3 成立;

⑶如图,在一条笔直的高速公路旁边依次有 ABC 三个城市,它们距高速公路起点的距离分别是 567km689km889km.现在需要在该公路旁建一个物流集散中心 P,请直接指出该物流集散中心 P 应该建设在何处,才能使得 P 到三个城市的距离之和最小?这个最小距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】701班小强买了张100元的深圳通乘车卡,如果他乘车的次数用表示,则记录他每次乘车后的余额n ()如下表:

1)写出余额n与乘车的次数m的关系式.

2)利用上述关系式计算小强乘了23次车还剩下多少元?

3)小强最多能乘几次车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H.

(1)如图1,求证:PQ=PE;

(2)如图2,G是圆上一点,∠GAB=30,连接AG交PD于F,连接BF,tan∠BFE=,求∠C的度数;

(3)如图3,在(2)的条件下,PD=6,连接QG交BC于点M,求QM的长.

查看答案和解析>>

同步练习册答案