精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数yax2+bx+ca≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm0有两个不相等的实数根,下列结论:其中,正确的个数有(  )

b24ac0;②ab+c0;③abc0;④m>﹣2

A.1B.2C.3D.4

【答案】B

【解析】

根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.

解:抛物线与x轴有两个不同交点,因此b24ac0,故①是错误的;

由图象可知,当x=﹣1时,yab+c0,因此②是错误的;

由开口方向可得,a0,对称轴在y轴右侧,ab异号,因此b0,与y轴交点在负半轴,因此c0,所有abc0,因此③正确的;

由关于x的一元二次方程ax2+bx+cm0有两个不相等的实数根,就是当ym时,对应抛物线上有两个不同的点,即(x1m),(x2m),由图象可知此时m>﹣2

因此④正确的,

综上所述,正确的有两个,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某办公楼的后面有一建筑物,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子,而当光线与地面夹角是45°时,办公楼顶在地面上的影子与墙角25米的距离(在一条直线上)

1)求办公楼的高度;

2)若要在之间挂一些彩旗,请你求出之间的距离.(参考数据:)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举办网络安全知识答题竞赛,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.

平均分(分)

中位数(分)

众数(分)

方差(分2

七年级

a

85

b

S七年级2

八年级

85

c

100

160

1)根据图示填空:a   b   c   

2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?

3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为表彰在了不起我的国演讲比赛中获奖的选手,决定购买甲、乙两种图书作为奖品.已知购买30本甲种图书,50本乙种图书共需1350元;购买50本甲种图书,30本乙种图书共需1450元.

1)求甲、乙两种图书的单价分别是多少元?

2)学校要求购买甲、乙两种图书共40本,且甲种图书的数量不少于乙种图书数量的,请设计最省钱的购书方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国魏晋时期的数学家刘徽(263年左右)首创割圆术,所谓割圆术就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率.刘微从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,,割得越细,正多边形就越接近圆.设圆的半径为,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率__________.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图,以ABCBC边上一点O为圆心的圆,经过AB两点,且与BC边交于点EDBE的下半圆弧的中点,连接ADBCFAC=FC

(1)求证:AC是⊙O的切线;

(2)已知圆的半径R=5,EF=3,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是24,则△OAB的面积是_____

查看答案和解析>>

同步练习册答案