精英家教网 > 初中数学 > 题目详情

【题目】城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用,名为“数据包络分析”(简称DEA)的一种效率评价方法,可以很好地优化出租车资源配置,为了解出租车资源的“供需匹配”,北京、上海等城市对每天24个时段的DEA值进行调查,调查发现,DEA值越大,说明匹配度越好.在某一段时间内,北京的DEAy与时刻t的关系近似满足函数关系(a,b,c是常数,且≠0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t是(

A. 4.8 B. 5 C. 5.2 D. 5.5

【答案】C

【解析】

先用待定系数法求得函数解析式,根据二次函数的性质求得y取得最大值时x的值即可得答案.

将(4,0.43)、(5,1.1)、(6,0.87)代入解析式得:

解得:

y=-0.45x2+4.72x-11.25,

x=-≈5.244时,y取得最大值,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形AOBC的边OBOA分别在xy轴上,点C坐标为(88),将正方形AOBC绕点A逆时针旋转角度αα90°),得到正方形ADEFED交线段BC于点QED的延长线交线段OB于点P,连接APAQ

1)求证:ACQ≌△ADQ

2)求∠PAQ的度数,并判断线段OPPQCQ之间的数量关系,并说明理由;

3)连接BEECCDDB得到四边形BECD,在旋转过程中,四边形BECD能否是矩形?如果能,请求出点P的坐标,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB8BC4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E

(Ⅰ)如图①,求∠CED的大小;

(Ⅱ)如图②,当DE=BE时,求∠C的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(

A.一处B.二处C.三处D.四处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:

1)乙队单独做需要多少天才能完成任务?

2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若xy都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是矩形ABCDAB上一动点(不与点B重合),过点EEFDEBC于点F,连接DF.已知AB = 4cmAD = 2cm,设AE两点间的距离为xcmDEF面积为ycm2.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小明的探究过程,请补充完整:

1)确定自变量x的取值范围是

2)通过取点、画图、测量、分析,得到了xy的几组值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

y/cm2

4.0

3.7

3.9

3.8

3.3

2.0

(说明:补全表格时相关数值保留一位小数)

3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

4结合画出的函数图象,解决问题:当DEF面积最大时,AE的长度为 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC.

(1)如图1,若OAB的中点,以O为圆心,OB为半径作⊙OBC于点D,过DDEAC,垂足为E.

①试说明:BD=CD;

②判断直线DE与⊙O的位置关系,并说明理由.

(2)如图2,若点O沿OB向点B移动,以O为圆心,以OB为半径作⊙OAC相切于点F,与AB相交于点G,与BC相交于点D,DEAC,垂足为E,已知⊙O的半径长为4,CE=2,求切线AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果两条线段将一个三角形分成 3个等腰三角形,我们把这两条线段叫做这个三角形的“三分线”.例如:如图①,线段把一个顶角为的等腰分成了 3个等腰三角形,则线段就是等腰的“三分线”.

1)图②是一个顶角为 45°的等腰三角形,在图中画出“三分线”,并标出每个等腰三角形顶角的度数.

2)如图③,在边上取一点,令可以分割出第一个等腰,接着又需要考虑如何将分成2个等腰三角形,即可画出所需要的三分线,类比该方法,在图④中画出的“三分线”,并标出每个等腰三角形顶角的度数;

3)在中,

①画出;(尺规画图,不写作法,保留作图痕迹)

②画出的“三分线”,并做适当的标注.

查看答案和解析>>

同步练习册答案