精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=ax2+bx-
3
2
(a≠0)的图象经过点A,点B.
(1)求二次函数的表达式;
(2)若反比例函数y=
2
x
(x>0)的图象与二次函数y=ax2+bx-
3
2
(a≠0)的图象在第一象限内交于点C(p,q),p落在两个相邻的正整数之间,请你直接写出这两个相邻的正整数;
(3)若反比例函数y=
k
x
(x>0,k>0)的图象与二次函数y=ax2+bx-
3
2
(a≠0)的图象在第一象限内交于点D(m,n),且2<m<3,试求实数k的取值范围.
考点:二次函数综合题
专题:
分析:(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式.
(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的x0的值,进而可写出所求的两个正整数.
(3)点A的横坐标x0满足2<x0<3,可通过x=2,x=3两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.
解答:解:(1)由图可知:点A、点B的坐标分别为(-3,0),(1,0),
且在抛物线y=ax2+bx-
3
2
上,
a+b=
3
2
9a-3b=
3
2
.

解得:
a=
1
2
b=1.

∴二次函数的表达式为y=
1
2
x2+x-
3
2


(2)正确画出反比例函数在第一象限内的图象,
由图象可知,交点的横坐标x0落在1和2之间,从而得出这两个相邻的正整数为1与2.

(3)由题意可得:
k
2
1
2
×22+2-
3
2
k
3
1
2
×32+3-
3
2
.

解得:5<k<18.
∴实数k的取值范围为5<k<18.
点评:本题主要考查了二次函数和反比例函数的相关知识以及在直角坐标系中作图、读图的能力,解题的关键是结合函数的图象得到不等式,并据此求得k的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD相交于O,OE是∠AOD的角平分线,∠AOC=28°,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题提出】如果我们身边没有量角器和三角板,如何作15°大小的角呢?
【实践操作】如图.
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC.
第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN.
【问题解决】
(1)求∠NBC的度数;
(2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除∠NBC的度数以外).
(3)你能继续折出15°大小的角了吗?说说你是怎么做的.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A(1,0),点B(1,
3
),以AB为边在AB的右边作矩形ABCD,连技OB、BD,过D点作线段BO的垂线,垂足为F,交AB于点E.设AD=m.
(1)求m=
 
时,△OAB≌△EAD;
(2)在(1)的条件下求过O、E、D三点的抛物线的解析式;
〔3)当点F为BO的中点时,求m的值;
(4)在(3)的条件下,在直线DF上是否存在点M使△BDM是等腰三角形?若存在,求点M的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

平行四边形ABCD中,E,F是对角线AC上两点,且∠ADF=∠CBE,连接DE,BF.
(1)求证:△AFD≌△CEB;
(2)求证:四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在学习地理时,我们知道:“海拔越高,气温越低”,下表是海拔高度h(千米)与此高度处气温t(℃)的关系.
海拔高度h(千米) 0 1 2 3 4 5
气温t(℃) 20 14 8 2 -4 -10
根据上表,回答以下问题.
(1)请写出气温t与海拔高度h的关系式;
(2)2014年3月8日,马航MH370航班失去联系,据报道称,马航MH370航班失去联系前飞行高度10668米,请计算在该海拔高度时的气温大约是多少?
(3)当气温是零下40℃时,其海拔高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=a(x-2)2+1与x轴从左到右依次交于A、B两点,与y轴交于点C,点B的坐标为(3,0),连接AC、BC.
(1)求此抛物线的解析式;
(2)若P为此抛物线的对称轴上的一个动点,连接PA、PB、PC,设点P的纵坐标表示为m.
试探究:
①当m为何值时,|PA-PC|的值最大?并求出这个最大值.
②在P点的运动过程中,∠APB能否与∠ACB相等?若能,请求出P点的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案