【题目】已知二次函数的图像经过点(1,0).
(1)当,时,求二次函数的解析式及二次函数最小值;
(2)二次函数的图像经过点(,),(,).若对任意实数,函数值都不小于,求此时二次函数的解析式.
【答案】(1),最小值为-4;(2)
【解析】
(1)利用待定系数法以及配方法进一步求解即可;
(2)利用二次函数的图像经过点(,),(,)即可求出函数的对称轴,然后进一步分别用表示出b、c,根据对任意实数,函数值都不小于列出不等式,然后进一步即可得出解析式.
(1)∵,,
∴,
∵图像经过点(1,0),
∴,
解得:,
∴函数解析式为: ,
配方可得:,
∴当时,函数取得最小值为-4;
(2)∵二次函数的图像经过点(,),(,),
∴二次函数对称轴为:,
∴,
∴,
又∵次函数的图像经过点(1,0),
即:,
∴,
∴原解析式为:,
∴顶点纵坐标为:,
∵对任意实数,函数值都不小于,
∴,且≥,
∴,
即:,
∵,
∴,
∴,,
∴二次函数解析式为:.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)抛物线上是否存在一点P,使得∠APB=∠ACO成立?若存在,求出点P的坐标:若不存在,请说明理由.
(3)我们规定:对于直线l1:y=k1x+b,直线l2:y=k2x+b2,若直线k1k2=﹣1,则直线l1⊥l2;反过来也成立.请根据这个规定解决下列可题:
如图2,将该抛物线向上平移过原点与直线y=kx(k>0)另交于C点.点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC′,重足为点M,且M在线段OC′上(不与O、C′重合),过点T作直线TN∥y轴交OC'于点N.若在点T运动的过程中,为常数,试确定k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,平面上的动点P满足PC⊥AB,记∠APB=α.
(1)如图1,当点P在直线BC上方时,直接写出∠PAC的大小(用含α的代数式表示);
(2)过点B作BC的垂线BD,同时作∠PAD=60°,射线AD与直线BD交于点D.
①如图2,判断△ADP的形状,并给出证明;
②连结CD,若在点P的运动过程中,CD=AB.直接写出此时α的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.
请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳。已知购买一副羽毛球拍比购买一根跳绳多20元。若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半。
(1)求购买一副羽毛球拍、一根跳绳各需多少元?
(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的倍还多,且该班购买羽毛球拍和跳绳的总费用不超过元,那么八(1)班最多可购买多少副羽毛球拍?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.
(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm. 点P从点A出发,沿AB边以2 cm/s的速度向点B匀速移动;点Q从点B出发,沿BC边以1 cm/s的速度向点C匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).
(1)当PQ∥AC时,求t的值;
(2)当t为何值时,△PBQ的面积等于cm 2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家销售一种商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=30时,y=500;当x=35时,y=450.物价部门规定,该商品的销售单价不能超过48元/件,若该商品的定价为30元,实际按定价的8折出售,仍然可以获得20%的利润.
(1)求该商品的成本价和每天获得的最大利润;
(2)该公司每天需要人工、水电和房租支出共计b元,若考虑这一因素后公司对最大利润要控制在8000元至8500元之间(包含8000和8500),求出b的取值范围;
(3)若该商品的进价改为a元,每天的销量与当天的销售单价的关系不变,当30≤x≤48时,该商品利润随x的增大而增大,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com