【题目】如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C(0,﹣3).
(1)求抛物线的解析式;
(2)抛物线上是否存在一点P,使得∠APB=∠ACO成立?若存在,求出点P的坐标:若不存在,请说明理由.
(3)我们规定:对于直线l1:y=k1x+b,直线l2:y=k2x+b2,若直线k1k2=﹣1,则直线l1⊥l2;反过来也成立.请根据这个规定解决下列可题:
如图2,将该抛物线向上平移过原点与直线y=kx(k>0)另交于C点.点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC′,重足为点M,且M在线段OC′上(不与O、C′重合),过点T作直线TN∥y轴交OC'于点N.若在点T运动的过程中,为常数,试确定k的值.
【答案】(1)y=x2﹣2x﹣3;(2)存在,点P(﹣,或(﹣,﹣);(3)k=.
【解析】
(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;
(2)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可;
(3)OM==,ON=m,即可求解.
解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),
即﹣3a=﹣3,解得:a=1,
故抛物线的表达式为:y=x2﹣2x﹣3…①;
(2)tan∠APB=tan∠ACO=,
①当点P在x轴上方时,
则直线BP的表达式为:y=﹣x+1…②,
联立①②并解得:x=3(舍去)或﹣,故点P(﹣,);
②当点P在x轴下方时,
同理可得:点P(﹣,﹣);
综上,点P(﹣,或(﹣,﹣);
(3)设点T(m,m2﹣2m),直线ON的表达式为:y=kx…③,
∵TM⊥OC,则直线TM为:y=﹣x+b,
将点T的坐标代入上式并解得:
直线TM的表达式为:y=﹣x+(m2﹣2m+)…④,
联立③④并解得:x=,y=,
则OM==,ON=m,
=,
当k=时,=为常数.
科目:初中数学 来源: 题型:
【题目】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有( )个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,∠ACB=90°,AC=BC=4.D是AB的中点,P是平面上的一点,且DP=1,连接BP、CP,将点B绕点P顺时针旋转90°得到点B′,连CB′,CB′的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(,b是常数,且≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(-1,0),B(3,0)
(1)①求抛物线的解析式;②顶点D的坐标为_______;③直线BD的解析式为______;
(2)若P为线段BD上的一个动点,其横坐标为m,过点P作PQ⊥x轴于点Q,求当m为何值时,四边形PQOC的面积最大?
(3)若点M是抛物线在第一象限上的一个动点,过点M作MN∥AC交轴于点N.当点M的坐标为_______时,四边形MNAC是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,点E在x轴上.
(1)求抛物线的解析式及顶点D的坐标;
(2)在抛物线A、C两点之间有一点F,使△FAC的面积最大,求F点坐标;
(3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图像经过点(1,0).
(1)当,时,求二次函数的解析式及二次函数最小值;
(2)二次函数的图像经过点(,),(,).若对任意实数,函数值都不小于,求此时二次函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com