精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c经过点A(30),点C(03),点D为二次函数的顶点,DE为二次函数的对称轴,点Ex轴上.

1)求抛物线的解析式及顶点D的坐标;

2)在抛物线AC两点之间有一点F,使FAC的面积最大,求F点坐标;

3)直线DE上是否存在点P到直线AD的距离与到x轴的距离相等?若存在,请求出点P,若不存在,请说明理由.

【答案】1y=x22x+3D(14);(2F点坐标为();(3)存在,满足条件的P点坐标为(11)(1,﹣1)

【解析】

1)把代入得得到关于的方程组,然后解方程组即可求出抛物线解析式,再把解析式配成顶点式可得D点坐标;
2)如图2,作FQy轴交ACQ,先利用待定系数法求出直线AC的解析式,设,则,则可表示出,,根据三角形面积公式结合二次函数的性质即可求解;
3)设,根据得到,最后分两种情况求解即可得出结论.

解:(1)把代入

∴抛物线的解析式为:

∴点D的坐标为:

2)如图2,作FQy轴交ACQ

设直线AC的解析式为

代入

解得

∴直线AC的解析式为:

,则

=

时,FAC的面积最大,此时F点坐标为(﹣),

3)存在.

D(﹣14),A(﹣30),E(﹣10),

,则,如图3

∵∠HDP=EDA,∠DHP=DEA=90°

t0时,,解得:

t0时,,解得:

综上所述,满足条件的P点坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1

2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1

3△A1B1C1△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与两坐标轴分别交于AB两点,抛物线 经过点AB,点P为直线AB上的一个动点,过Py轴的平行线与抛物线交于C, 抛物线与x轴另一个交点为D

1)求图中抛物线的解析式;

2)当点P线段AB上运动时,求线段PC的长度的最大值;

3)在直线AB上是否存在点P,使得以OAPC为顶点的四边形是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+cx轴交于点A(10)B(30),与y轴交于点C(0,﹣3).

(1)求抛物线的解析式;

(2)抛物线上是否存在一点P,使得∠APB=∠ACO成立?若存在,求出点P的坐标:若不存在,请说明理由.

(3)我们规定:对于直线l1yk1x+b,直线l2yk2x+b2,若直线k1k2=﹣1,则直线l1l2;反过来也成立.请根据这个规定解决下列可题:

如图2,将该抛物线向上平移过原点与直线ykx(k0)另交于C.T为该二次函数图象上位于直线OC下方的动点,过点T作直线TMOC′,重足为点M,且M在线段OC′(不与OC′重合),过点T作直线TNy轴交OC'于点N.若在点T运动的过程中,为常数,试确定k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2bx3在坐标系中的位置如图所示,它与x轴、y轴的交点分别为AB,点P是其对称轴x1上的动点,根据图中提供的信息,给出以下结论:①2ab0;②x3ax2bx30的一个根;③△PAB周长的最小值是3.其中正确的是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,MNC三点的坐标分别为(1),(31),(30),点A为线段MN上的一个动点,连接AC,过点AABACy轴于点B,当点AM运动到N时,点B随之运动,设点B的坐标为(0b),则b的取值范围是(  )

A.b1B.b1C.bD.b1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,点在边上移动(点不与点 重合),满足且点分别在边上.

)求证:

)当点移动到的中点时,求证: 平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点为直线上的两点,过两点分别作轴的平行线交双曲线)于两点.,则的值为(

A.12B.7C.6D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:平行四边形ABCD的两边ABAD的长是关于x的方程x2mx+0的两个实数根.

1m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

同步练习册答案