【题目】如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点,P为AB上一点,连接PE,过点E作PE的垂线交射线AD于点Q,连接PQ,设AP的长为t.
(1)用含t的代数式表示AQ的长;
(2)若△PEQ的面积等于10,求t的值.
科目:初中数学 来源: 题型:
【题目】如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.
(1)求的值;
(2)若两个图像在第三象限的交点为,则点的坐标为 ;
(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出:
(1)如图①,在边长为8的等边三角形ABC中,点D,E分别在BC与AC上,且BD=2,∠ADE=60°,则线段CE的长为 .
问题
(2)如图②,已知AP∥BQ,∠A=∠B=90°,AB=6,D是射线AP上的一个动点(不与点A重合),E是线段AB上的一个动点(不与A,B重合),EC⊥DE,交射线BQ于点C,且AD+DE=AB,求△BCE的周长.
问题解决:
(3)如图③,在四边形ABCD中,AB+CD=10(AB<CD),BC=6,点E为BC的中点,且∠AED=108°,则边AD的长是否存在最大值?若存在,请求AD的最大值,并求出此时AB,CD的长度,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=6x+6与x轴、y轴分别交于A、D两点,直线l2:y=﹣x+3与x轴、y轴分别交于B、C两点.
(1)在直线l2上找一点E,使|AE﹣DE|的值最大,并求|AE﹣DE|的最大值.
(2)以AB为边作矩形ABMN,点C在边MN上,动点P从B出发,沿射线BM方向移动,作△PAB关于直线PA的对称△PAB'.是否存在点P,使得△PMB'是直角三角形?若存在,请直接写出所有符合题意的点P的坐标?若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线PQ的同侧有两点M,N,点T在直线PQ上,若∠MTP=∠NTQ,则称点M,N为关于直线PQ的衍射点.如图2,BD是矩形ABCD的对角线,E是边BC延长线上的一点,且CE=BC,连接AE交CD于点F,交BD于点P,连接BF,CP.
(1)求证:点A,B是关于直线CD的衍射点.
(2)若点C,F是关于直线BD的衍射点,CP=2PF=2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,
(1)证明:△ABD≌△BCE;
(2)证明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?
(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com