【题目】如图,直线l1:y=6x+6与x轴、y轴分别交于A、D两点,直线l2:y=﹣x+3与x轴、y轴分别交于B、C两点.
(1)在直线l2上找一点E,使|AE﹣DE|的值最大,并求|AE﹣DE|的最大值.
(2)以AB为边作矩形ABMN,点C在边MN上,动点P从B出发,沿射线BM方向移动,作△PAB关于直线PA的对称△PAB'.是否存在点P,使得△PMB'是直角三角形?若存在,请直接写出所有符合题意的点P的坐标?若不存在,请说明理由.
【答案】(1);(2)满足条件的点P的坐标为(3,)或(3,).
【解析】
(1)如图1中,作点D关于直线y=﹣x+3的对称点D′,连接CD′,AD′,延长AD′交直线BC于E,点E即为所求.证明△DCD′是等腰直角三角形求出点D′的坐标即可解决问题.
(2)分两种情形:如图2﹣1中,当∠PB′M=90°时,A,B′,M共线.如图2﹣2中,当∠PMB′=90°时,点B′落在MN上.分别利用勾股定理,相似三角形的性质求解即可.
解:(1)∵直线l1:y=6x+6与x轴、y轴分别交于A、D两点,直线l2:y=﹣x+3与x轴、y轴分别交于B、C两点,
∴A(﹣1,0),D(0,6),B(3,0),C(0,3),
如图1中,作点D关于直线y=﹣x+3的对称点D′,连接CD′,AD′,延长AD′交直线BC于E,点E即为所求.
∵OC=3,OD=6,
∴CD=3,
∵∠DCE=∠OCB=∠ECD′=45°,
∴∠DCD′=90′,
∴D′(﹣3,3),
∴AD′=,
∴|AE﹣DE|的最大值=AD′=.
(2)如图2﹣1中,当∠PB′M=90°时,A,B′,M共线.
在Rt△ABM中,∵∠ABM=90°,AB=4,BM=3,
∴AB=,
∵AB=AB′=4,
∴MB′=5﹣4=1,设PB=PB′=x,
在Rt△PMB′中,则有(3﹣x)2=x2+12,
解得:x=,
∴P(3,).
如图2﹣2中,当∠PMB′=90°时,点B′落在MN上.
在Rt△ANB′中,∵∠N=90°,AB′=AB=4,AN=3,
∴NB′=,
∵∠AB′P=∠M=∠N=90°,
∴∠NAB′+∠AB′N=90°,∠AB′N+∠PB′M=90°,
∴∠NAB′=∠MB′P,
∴△ANB′∽△B′MP,
∴,
∴,
∴PB′=,
∴PB=PB′=,
∴P(3,),
综上所述,满足条件的点P的坐标为(3,)或(3,).
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣(2a+1)x+c(a>0)的图象经过坐标原点O,一次函数y=x﹣4与x轴、y轴分别交于点A、B.
(1)c= ,点A的坐标为 .
(2)若二次函数y=a2﹣(2a+1)x+c的图象经过点A,求a的值.
(3)若二次函数y=a2﹣(2a+1)x+c的图象与△AOB只有一个公共点,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.
(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.
(2)求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一元二次方程ax2+bx+c=0 的两根 x1,x2均为正数,其中x1>x2,且满足1<x1﹣x2<2,那么称这个方程有“友好根”.
(1)方程(x﹣)(x﹣)=0_____“友好根”(填:“有”或“没有”);
(2)已知关于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
七年级 | 0 | 1 | 0 | a | 7 | 1 |
八年级 | 1 | 0 | 0 | 7 | b | 2 |
分析数据:
平均数 | 众数 | 中位数 | |
七年级 | 78 | 75 | |
八年级 | 78 | 80.5 |
应用数据:
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的益智玩具由一块主板AB和一个支撑架CD组成,其侧面示意图如图1所示,测得AB⊥BD,AB=40cm,CD=25cm,点C为AB的中点.现为了方便儿童操作,需调整玩具的摆放,将AB绕点B顺时针旋转,CD绕点C旋转,同时点D做水平滑动(如图2),当点C1到BD的距离为10cm时停止运动,求点A经过的路径的长和点D滑动的距离.(结果保留整数,参考数据:≈1.732, ≈4.583,π≈3.142)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点,P为AB上一点,连接PE,过点E作PE的垂线交射线AD于点Q,连接PQ,设AP的长为t.
(1)用含t的代数式表示AQ的长;
(2)若△PEQ的面积等于10,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com