精英家教网 > 初中数学 > 题目详情
17.数轴上点A到原点的距离是1,点B到原点的距离是2,则A、B两点间的距离是多少?

分析 根据数轴上到原点距离相等点有两个,可得A点表示的数,B点表示的数,根据两点间的距离是大数减小数,可得答案.

解答 解:点A到原点的距离是1,点B到原点的距离是2,得
A点表示的数是1或-1,B点表示的数是2或-2.
当A表示1,B表示2时,AB=2-1=1;
当A表示1,B表示-2时,AB=1-(-2)=3;
当A表示-1,B表示2时,AB=2-(-1)=3;
当A表示-11,B表示-2时,AB=-1-(-2)=1;
综上所述:AB间的距离是1或3.

点评 本题考查了数轴,利用数轴上到原点距离相等点有两个得出A点表示的数,B点表示的数是解题关键,要分类讨论,以防遗漏.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.下列计算正确的是(  )
A.-22=4B.$\frac{2^2}{3}=\frac{4}{9}$C.$({-3.5})-({-5\frac{1}{2}})=2$D.$({-\frac{1}{2}})-|{-\frac{1}{2}}|=0$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2,与y轴交于点(0,-2).下列结论:①a<0;②abc<0;③a+b-2>0;④2a+b>1.其中正确结论的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.试用含x的多项式表示如图所示阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)已知:在△ABC中,AB=AC,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点(如图1).
图中共有5个等腰三角形,分别是△ABC,△AEF,△DEB,△DFC,△BDC;EF与BE、CF之间的关系是EF=BE+CF.
(2)若将(1)中“△ABC,AB=AC”改为“若△ABC为不等边三角形”,其余条件不变(如图2),则图中共有2个等腰三角形,分别是△BDE,△CFD;EF与BE,CF之间的关系是EF=BE+CF.
(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC的外角∠ACG,过D点作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间有何关系?写出你的结论,并加以证明
(4)已知:如图4,点D在△ABC外,BD,CD分别平分△ABC的外角∠GBC和∠HCB,过点D作DE∥BC,分别交BG,CH于E,F两点,则EF与BE,CF之间存在怎样的关系?写出你的结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在五边形ABCDE中,AE∥BC,∠D=∠E=∠C,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知关于x的方程mx+2=x①的根是负实数,(m-2)x2+(2m-3)x-1+m=0②有实根
(1)求m的取值范围;
(2)若两个方程的根均为整数,求整数m的值;
(3)求证:无论m取何值,抛物线y=(m-2)x2+(2m-3)x-1+m总经过一个定点;
(4)在(2)的条件下,若a是两方程中较大的整数根,对于b取任意实数,关于x的方程ax2-2bx+c+b=0都有实根,求c的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,阴影部分的面积是26m2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知$\sqrt{x-1}$+$\sqrt{1-x}$=y+4,求x-y的值.

查看答案和解析>>

同步练习册答案