精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)直线BC的解析式为y=x﹣3;
(2)△BCF的面积为10;
(3)在线段BC上存在点P,使得以点P,A,B为顶点的三角形与△BOC相似, P点坐标为(2,﹣1)或(,﹣).

试题分析:(1)根据坐标轴上点的坐标特征可得点B,C的坐标,再根据待定系数法可得点B,C所在直线的函数解析式;
(2)根据勾股定理可得BC的长,根据旋转的性质和三角形面积公式即可求解;
(3)存在.分两种情况讨论:①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC;②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.则△BAP2∽△BCO;依此讨论即可求解.
试题解析:(1)当y=0时,﹣x2+x﹣2=0,
解得x1=2,x2=4,
∴点A,B的坐标分别为(2,0),(4,0),
当x=0时,y=﹣2,
∴C点的坐标分别为(0,﹣2),
设直线BC的解析式为y=kx+b(k≠0),则
解得
∴直线BC的解析式为y=x﹣3;
(2)∵CD∥x轴,BD∥y轴,
∴∠ECD=90°,
∵点B,C的坐标分别为(4,0),(0,﹣2),
∴BC==2
∵△FEC是由△BDC绕点C逆时针旋转得到,
∴△BCF的面积=BC•FC=×2×2=10;
(3)存在.分两种情况讨论:
①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC,
∵点A的坐标为(2,0),
∴点P1的横坐标是2,
∵点P1在点BC所在直线上,
∴y=x﹣2=×2﹣2=﹣1,
∴点P1的坐标为(2,﹣1);
②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.

∴△BAP2∽△BCO,
,

解得AP2=

∴AP2•BP=CO•BP2
×4=2BP2
解得BP2=
AB•QP2=AP2•BP2
∴2QP2=×
解得QP2=
∴点P2的纵坐标是﹣
∵点P2在BC所在直线上,
∴x=
∴点P2的坐标为(,﹣),
∴满足条件的P点坐标为(2,﹣1)或(,﹣).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.

(1)求抛物线的解析式;
(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.
(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).
(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、BN,若S△MBC=S△NBC,求直线MN的解析式;
(2)在(1)条件下,已知点P(t,0)为x轴上的一个动点,
①若△PMN为直角三角形,求点P的坐标.
②若∠MPN>90°,则t的取值范围是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y1=x,y2=(x+1)2-7.
(1)求它们图象的交点;
(2)结合图象,确定当x为何值时,有y1>y2;y1<y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+0.5x-3顶点坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=2x2中,自变量x的取值范围是______,函数值y的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为(     ).

查看答案和解析>>

同步练习册答案