【题目】为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了_______名学生;
(2)请将两个统计图补充完整;
(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人?
【答案】*1)200;(2)补图见解析;(3)240人.
【解析】试题分析:
(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由10÷5%即可求得总人数为200人;
(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;②由80÷200×100%可得喜欢A项运动的人所占的百分比;由30÷200×100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;
(3)由1200×20%可得全校喜欢“排球”运动的人数.
试题解析:
(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,
∴这次抽查的总人数为:10÷5%=200(人);
(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,
∴喜欢A项运动的人数为:200-10-40-30-40=80,
②喜欢A项运动的人所占的百分比为:80÷200×100%=40%;
喜欢D项运动的人所占的百分比为:30÷200×100%=15%;
根据上述所得数据补充完两幅图形如下:
(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240(人).
答:全校学生中,喜欢排球的人数约为240人.
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC在直角坐标系中.
(1)请直接写出点A、C两点的坐标:
(2)三角形ABC的面积是 ;
(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,点P,Q是BC边上的两个动点(不与点B、C重合),且AP=AQ.
(1)如图1,已知,∠BAP=20°,求∠AQB的度数;
(2)点Q关于直线AC的对称点为M,分别联结AM、PM;
①当点P分别在点Q左侧和右侧时,依据题意将图2、图3补全(不写画法);
②小明提出这样的猜想:点P、Q在运动的过程中,始终有PA=PM.经过小红验证,这个猜想是正确的,请你在①的点P、Q的两种位置关系中选择一种说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探寻“勾股数”:直角三角形三边长是整数时我们称之为“勾股数”,勾股数有多少?勾股数有规律吗?
(1)请你写出两组勾股数.
(2)试构造勾股数.构造勾股数就是要寻找3个正整数,使他们满足“两个数的平方和(或差)等于第三数的平方”,即满足以下形式:
① 2+ 2= 2;或② 2﹣ 2= 2
③要满足以上①、②的形式,不妨从乘法公式入手.我们已经知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右边也能写成 2的形式,就能符合②的形式.
因此不妨设x=m2,y=n2,(m、n为任意正整数,m>n),请你写出含m、n的这三个勾股数并证明它们是勾股数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”
(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;
(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线上部分点的横坐标, 纵坐标的对应值如下表:
… | 0 | 1 | 2 | … | |||
… | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法正确的是 .
①抛物线与轴的一个交点为; ②抛物线与轴的交点为;
③抛物线的对称轴是:直线; ④在对称轴左侧随增大而增大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图线段AB和CD表示两面镜子,且直线AB∥直线CD,光线EF经过镜子AB反射到镜予CD,最后反射到光线GH.光线反射时,∠1=∠2,∠3=∠4,下列结论:①直线EF平行于直线GH;②∠FGH的角平分线所在的直线垂直于直线AB;③∠BFE的角平分线所在的直线垂直于∠4的角平分线所在的直线;④当CD绕点G顺时针旋转90时,直线EF与直线GH不一定平行,其中正确的是( )
A. ①②③④B. ①②③C. ②③D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;
(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;
(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com