| A. | ∠AED=∠B | B. | ∠ADE=∠C | C. | $\frac{AD}{AB}$=$\frac{AE}{AC}$ | D. | $\frac{AD}{AE}$=$\frac{AC}{AB}$ |
分析 根据相似三角形的判定定理对各选项进行逐一判断即可.
解答 解:A、∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;
B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;
C、$\frac{AD}{AB}$=$\frac{AE}{AC}$不能判定△ADE∽△ACB,故B选项正确;
D、$\frac{AD}{AE}$=$\frac{AC}{AB}$,推出$\frac{AD}{AC}$=$\frac{AE}{AB}$且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.
故选C.
点评 本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | y=$\frac{4}{x}$ | B. | y=$\frac{2}{x}$ | C. | y=-$\frac{2}{x}$ | D. | y=-$\frac{4}{x}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com