【题目】某学习兴趣小组参加一次单元测验,成绩统计情况如下表.
(1)兴趣小组本次单元测试成绩的平均数、中位数、众数各是多少?
(2)老师打算为兴趣小组下单元考试设定一个新目标,学生达到或超过目标给予奖励,并希望小组三分之一左右的优秀学生得到奖励,请你帮老师从平均数、中位数、众数三个数中选择一个比较恰当的目标数;如果计划让一半左右的人都得到奖励,确定哪个数作为目标恰当些?
【答案】(1)平均数:80.3分,中位数:78分,众数:75分;(2)平均数,中位数
【解析】
(1)根据平均数、中位数、众数的定义求解;
(2)根据所求出的平均数、中位数和众数进行分析解答即可.
(1)平均数为: (73+74+75×5+76×4+77×3+78×2+79×3+82+83+84+86×2+88×3+90+92×2)=80.3(分),
按照从小到大的顺序排列,共有30个数,位于第15、第16的数都是78,所以中位数是(78+78)÷2=78(分),
75出现了5次,次数最多,所以众数是75分;
(2)由(1)可知,平均数为80.3分,中位数为78分,众数为75分,
如果希望小组三分之一左右的优秀学生得到奖励,老师可以选择平均数;
如果计划让一半左右的人都得到奖励,根据中位数以上的人数占总人数的一半左右可得:确定中位数作为目标恰当些.
科目:初中数学 来源: 题型:
【题目】已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一个根,求m的值;
(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一个根,求m的值;
(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,∠BAC=60°,AC绕点C顺时针旋转60°至CD,F是CD的中点,连接BF交AC于点E,连接AD.
求证:(1)AC=BF;
(2)四边形ABFD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y2,y3,y4,y5,…,其中最小值和最大值分别为( )
A. y1,y2 B. y43,y44 C. y44,y45 D. y2014,y2015
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直线上摆放着三个正方形
(1)如图1,已知水平放置的两个正方形的边长依次是,斜着放置的正方形的面积_ ;两个直角三角形的面积之和为____ (均用表示)
(2)如图2,小正方形面积, 斜着放置的正方形的面积,求图中两个钝角三角形的面积_ ;_
(3)图3是由五个正方形所搭成的平面图,与分别表示所在地三角形与正方形的面积,试写出_ ;_ .(均用表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com