【题目】如图,每个小方格都是边长为1个单位长度的小正方形.
(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1 .
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2 .
(3)画出一条直线将△AC1A2的面积分成相等的两部分.
【答案】
(1)
解:如图所示
(2)
解:如图所示
(3)
解:如图所示
【解析】(1)分别将对应点A,B,C向右平移3个单位长度,即可得出图形;(2)分别将对应点A,B,C绕点O旋转180°,即可得出图形;(3)经过点O连接OC 1 , 即可平分△AC1A2的面积.
【考点精析】本题主要考查了平移的性质和旋转的性质的相关知识点,需要掌握①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是( )
A. 5 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】表是二次函数y=ax2+bx+c的部分x,y的对应值:
x | … | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |||
y | … | m | ﹣1 | ﹣2 | ﹣1 | 2 | … |
(1)二次函数图象的开口向 , 顶点坐标是 , m的值为;
(2)当x>0时,y的取值范围是;
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的 倍,得到矩形A1OC1B1 , 再将矩形A1OC1B1以原点O为位似中心放大 倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/秒的速度移动,点Q沿DA边从D以1cm/秒的速度移动,若P、Q同时出发,用t表示移动时间(0≤t≤6),求当t何值时,△APQ与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边三角形OAB与反比例函数y= (k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则 的值为 . (已知sin15°= )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.
(1)求此二次函数的关系式;
(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;
(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1 , △A1B1C1的外接圆记为⊙M1 , 是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,E为AD边的中点,把△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于G.
(1)求证:四边形BEDG为平行四边形.
(2)若BE=AD=10,且ABCD的面积等于60,求FG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com