【题目】如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
【答案】(1)2 (2)①等边三角形 ②
【解析】试题分析:(1)∵四边形ABCD是菱形,
∴△AOB为直角三角形,且OA=AC=1,OB=BD=.
在Rt△AOB中,由勾股定理得:
AB===2.
(2)①△AEF是等边三角形.理由如下:
∵由(1)知,菱形边长为2,AC=2,
∴△ABC与△ACD均为等边三角形,
∴∠BAC=∠BAE+∠CAE=60°,又∠EAF=∠CAF+∠CAE=60°,
∴∠BAE=∠CAF.
在△ABE与△ACF中,
∵,
∴△ABE≌△ACF(ASA),
∴AE=AF,
∴△AEF是等腰三角形,
又∵∠EAF=60°,
∴△AEF是等边三角形.
②BC=2,E为四等分点,且BE>CE,
∴CE=,BE=.
由①知△ABE≌△ACF,
∴CF=BE=.
∵∠EAC+∠AEG+∠EGA=∠GFC+∠FCG+∠CGF=180°(三角形内角和定理),
∠AEG=∠FCG=60°(等边三角形内角),
∠EGA=∠CGF(对顶角)
∴∠EAC=∠GFC.
在△CAE与△CFG中,
∵,
∴△CAE∽△CFG(AA),
∴,即,
解得:CG=.
科目:初中数学 来源: 题型:
【题目】甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:
(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲此时乙距A地的高度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣a2)3+(﹣a3)2﹣a2a3;
(2)(3+a)(3﹣a)+a2;
(3)(x+y﹣3)(x+y+3);
(4)( )﹣2+(﹣2)3+|﹣3|﹣(π﹣3.14)0 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程x2+6x﹣7=0的解为( )
A. x1=1,x2=7B. x1=﹣1,x2=7
C. x1=﹣1,x2=﹣7D. x1=1,x2=﹣7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形的上底为x,下底为9,高为6.
(1)求梯形面积y与x的关系;
(2)当y=40时,x为多少?
(3)当x=0时,y等于多少?此时它表示的是什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com