【题目】甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:
(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,乙追上了甲此时乙距A地的高度为多少米?
【答案】
(1)10;30
(2)解:由图知:x= +2=11,
∵C(0,100),D(20,300)
∴线段CD的解析式:y甲=10x+100(0≤x≤20);
∵A(2,30),B(11,300),
∴折线OAB的解析式为:y乙=
(3)解:由 ,
解得 ,
∴登山6.5分钟时乙追上甲.
此时乙距A地高度为165﹣30=135(米)
【解析】解:(1)甲的速度为:(300﹣100)÷20=10米/分, 根据图中信息知道乙一分的时间,走了15米,
那么2分时,将走30米;(1)甲的速度=(300﹣100)÷20=10,根据图像知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;(2)乙提速后,乙的速度是甲登山速度的3倍,所以乙的速度是30米/分.那么求出点B的坐标,加上点A的坐标代入一次函数解析式即可求出乙的函数解析式,把C、D坐标代入一次函数解析式可求出甲的函数解析式;(3)乙追上了甲即此时的y的值相等,然后求出时间在计算距A地的高度.
科目:初中数学 来源: 题型:
【题目】如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF.
(1)求证:AF∥CE;
(2)探究线段AF,EF,EC之间的数量关系,并说明理由;
(3)若BC=6,BG=8,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,点P(-2,a), Q(-2,a-5),若△POQ是直角三角形,则点P的坐标不可能为( )
A. (-2,4 )B. (-2, 0)C. (-2, 5)D. (-2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com