精英家教网 > 初中数学 > 题目详情
18.如图,将?ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.

分析 (1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;
(2)欲证明四边形BECD是矩形,只需推知BC=ED.

解答 证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.
又∵AB=BE,
∴BE=DC,
∴四边形BECD为平行四边形,
∴BD=EC.
∴在△ABD与△BEC中,
$\left\{\begin{array}{l}{AB=BE}\\{BD=EC}\\{AD=BC}\end{array}\right.$,
∴△ABD≌△BEC(SSS);

(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.
∵四边形ABCD为平行四边形,
∴∠A=∠BCD,即∠A=∠OCD.
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.

点评 本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).
(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1
(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2
(3)线段B1C1变换到B1C2的过程中扫过区域的面积为$\frac{9}{4}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+$\sqrt{3}$或4+2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )
A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2$\sqrt{3}$或2$\sqrt{7}$或2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点P、Q是反比例函数y=$\frac{k}{x}$图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1=S2.(填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则这个几何体是(  )
A.三棱锥B.三棱柱C.圆柱D.长方体

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.
(1)求点M的坐标(用含t的代数式表示).
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.
(3)当t为何值时,四边形BNDM的面积最小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列图案中,轴对称图形是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案