精英家教网 > 初中数学 > 题目详情
10.一个几何体的三视图如图所示,则这个几何体是(  )
A.三棱锥B.三棱柱C.圆柱D.长方体

分析 根据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱

解答 解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.
故选:B.

点评 本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.下列各组长度的线段中,不能够组成三角形的是(  )
A.1cm,2cm,3cmB.3cm,4cm,5cmC.5cm,6cm,7cmD.7cm,8cm,9cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵$\frac{a}{sinA}$=$\frac{b}{sinB}$∴b=$\frac{asinB}{sinA}$=$\frac{6sin30°}{sin45°}$=$\frac{6×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=3$\sqrt{2}$.
理解应用:
如图,甲船以每小时30$\sqrt{2}$海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10$\sqrt{2}$海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,将?ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)求证:△ABD≌△BEC;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求证:AD=BC;
(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=-$\frac{1}{25}$x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为(  )
A.-20mB.10mC.20mD.-10m

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,四边形ABCD中,∠A=90°,AB=3$\sqrt{3}$,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,AB是⊙O的直径,∠ABT=45°,AT=AB.
(1)求证:AT是⊙O的切线;
(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.
(1)快艇从港口B到小岛C需要多长时间?
(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.

查看答案和解析>>

同步练习册答案