精英家教网 > 初中数学 > 题目详情

【题目】已知:AOB三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为   度;

(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;

(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为  (直接写结果).

【答案】(1)90°;(2)30°;(3)12秒或48秒.

【解析】

(1)依据图形可知旋转角=NOB,从而可得到问题的答案;

(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-AON,AOM=90°-AON,然后求得∠AOM与∠NOC的差即可;

(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.

(1)由旋转的定义可知:旋转角=∠NOB=90°.

故答案为:90°

(2)AOMNOC=30°.

理由:∵∠AOCBOC=1:2,AOC+BOC=180°,

∴∠AOC=60°.

∴∠NOC=60°﹣AON

∵∠NOM=90°,

∴∠AOM=90°﹣AON

∴∠AOMNOC=(90°﹣AON)﹣(60°﹣AON)=30°.

(3)如图1所示:当OM为∠BOC的平分线时,

OM为∠BOC的平分线,

∴∠BOMBOC=60°,

t=60°÷5°=12秒.

如图2所示:当OM的反向延长为∠BOC的平分线时,

ON为为∠BOC的平分线,

∴∠BON=60°.

∴旋转的角度=60°+180°=240°.

t=240°÷5°=48秒.

故答案为:12秒或48秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%25%

1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?

2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:

(1)服药后,大约   分钟后,药物发挥作用.

(2)服药后,大约   小时,每毫升血液中含药量最大,最大值是   微克;

(3)服药后,药物发挥作用的时间大约有   小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索规律,观察下面算式,解答问题.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)请猜想1+3+5+7+9+…+19=

(2)请猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)试计算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:

租金(单位:元/时)

挖掘土石方量(单位:m3/时)

甲型挖掘机

100

60

乙型挖掘机

120

80

1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?

2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.
(1)请写出其中一个三角形的第三边的长;
(2)设组中最多有n个三角形,求n的值;
(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.
(1)求证:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下面各题
(1)计算:
(2)解分式方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.

查看答案和解析>>

同步练习册答案