精英家教网 > 初中数学 > 题目详情

如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.

(1)求S关于x的函数关系式;

(2)当围成的花圃面积为60平方米时,求AB的长;

(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

 

【答案】

(1)             

(2)AB的长为5米.    

(3)

 

,S随着x的增大而增大,

 

∴当x=15时,S的最大值是平方米.

【解析】(1)求出S=AB×BC代入即可;

(2)求出方程的解即可;

(3)把解析式化成顶点式,求出顶点的坐标即可得到答案

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地,中间还要隔成三块.设与墙头垂直的边AD长为x米,
(1)用含x的代数式表示AB的长为
32-4x
米;
(2)若要围成的矩形面积为60米2,求AB的长;
(3)当x为何值时,矩形的面积S最大?是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.
(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.
(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届浙江宁波七中九年级10月月考数学试卷(带解析) 题型:解答题

如图,用长为32米的篱笆围成一个外形为矩形的花圃,花圃的一边利用原有墙,中间用2道篱笆割成3个小矩形.已知原有墙的最大可利用长度为15米,花圃的面积为S平方米,平行于原有墙的一边BC长为x米.

(1)求S关于x的函数关系式;
(2)当围成的花圃面积为60平方米时,求AB的长;
(3)能否围成面积比60平方米更大的花圃?如果能,那么最大的面积是多少?如果不能,请说明理由.

查看答案和解析>>

同步练习册答案